1 |
aurelien |
1 |
<?php
|
|
|
2 |
/*=======================================================================
|
|
|
3 |
// File: JPGRAPH_REGSTAT.PHP
|
|
|
4 |
// Description: Regression and statistical analysis helper classes
|
|
|
5 |
// Created: 2002-12-01
|
|
|
6 |
// Ver: $Id: jpgraph_regstat.php 782 2006-10-08 08:09:02Z ljp $
|
|
|
7 |
//
|
|
|
8 |
// Copyright (c) Aditus Consulting. All rights reserved.
|
|
|
9 |
//========================================================================
|
|
|
10 |
*/
|
|
|
11 |
|
|
|
12 |
//------------------------------------------------------------------------
|
|
|
13 |
// CLASS Spline
|
|
|
14 |
// Create a new data array from an existing data array but with more points.
|
|
|
15 |
// The new points are interpolated using a cubic spline algorithm
|
|
|
16 |
//------------------------------------------------------------------------
|
|
|
17 |
class Spline {
|
|
|
18 |
// 3:rd degree polynom approximation
|
|
|
19 |
|
|
|
20 |
var $xdata,$ydata; // Data vectors
|
|
|
21 |
var $y2; // 2:nd derivate of ydata
|
|
|
22 |
var $n=0;
|
|
|
23 |
|
|
|
24 |
function Spline($xdata,$ydata) {
|
|
|
25 |
$this->y2 = array();
|
|
|
26 |
$this->xdata = $xdata;
|
|
|
27 |
$this->ydata = $ydata;
|
|
|
28 |
|
|
|
29 |
$n = count($ydata);
|
|
|
30 |
$this->n = $n;
|
|
|
31 |
if( $this->n !== count($xdata) ) {
|
|
|
32 |
JpGraphError::RaiseL(19001);
|
|
|
33 |
//('Spline: Number of X and Y coordinates must be the same');
|
|
|
34 |
}
|
|
|
35 |
|
|
|
36 |
// Natural spline 2:derivate == 0 at endpoints
|
|
|
37 |
$this->y2[0] = 0.0;
|
|
|
38 |
$this->y2[$n-1] = 0.0;
|
|
|
39 |
$delta[0] = 0.0;
|
|
|
40 |
|
|
|
41 |
// Calculate 2:nd derivate
|
|
|
42 |
for($i=1; $i < $n-1; ++$i) {
|
|
|
43 |
$d = ($xdata[$i+1]-$xdata[$i-1]);
|
|
|
44 |
if( $d == 0 ) {
|
|
|
45 |
JpGraphError::RaiseL(19002);
|
|
|
46 |
//('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
|
|
47 |
}
|
|
|
48 |
$s = ($xdata[$i]-$xdata[$i-1])/$d;
|
|
|
49 |
$p = $s*$this->y2[$i-1]+2.0;
|
|
|
50 |
$this->y2[$i] = ($s-1.0)/$p;
|
|
|
51 |
$delta[$i] = ($ydata[$i+1]-$ydata[$i])/($xdata[$i+1]-$xdata[$i]) -
|
|
|
52 |
($ydata[$i]-$ydata[$i-1])/($xdata[$i]-$xdata[$i-1]);
|
|
|
53 |
$delta[$i] = (6.0*$delta[$i]/($xdata[$i+1]-$xdata[$i-1])-$s*$delta[$i-1])/$p;
|
|
|
54 |
}
|
|
|
55 |
|
|
|
56 |
// Backward substitution
|
|
|
57 |
for( $j=$n-2; $j >= 0; --$j ) {
|
|
|
58 |
$this->y2[$j] = $this->y2[$j]*$this->y2[$j+1] + $delta[$j];
|
|
|
59 |
}
|
|
|
60 |
}
|
|
|
61 |
|
|
|
62 |
// Return the two new data vectors
|
|
|
63 |
function Get($num=50) {
|
|
|
64 |
$n = $this->n ;
|
|
|
65 |
$step = ($this->xdata[$n-1]-$this->xdata[0]) / ($num-1);
|
|
|
66 |
$xnew=array();
|
|
|
67 |
$ynew=array();
|
|
|
68 |
$xnew[0] = $this->xdata[0];
|
|
|
69 |
$ynew[0] = $this->ydata[0];
|
|
|
70 |
for( $j=1; $j < $num; ++$j ) {
|
|
|
71 |
$xnew[$j] = $xnew[0]+$j*$step;
|
|
|
72 |
$ynew[$j] = $this->Interpolate($xnew[$j]);
|
|
|
73 |
}
|
|
|
74 |
return array($xnew,$ynew);
|
|
|
75 |
}
|
|
|
76 |
|
|
|
77 |
// Return a single interpolated Y-value from an x value
|
|
|
78 |
function Interpolate($xpoint) {
|
|
|
79 |
|
|
|
80 |
$max = $this->n-1;
|
|
|
81 |
$min = 0;
|
|
|
82 |
|
|
|
83 |
// Binary search to find interval
|
|
|
84 |
while( $max-$min > 1 ) {
|
|
|
85 |
$k = ($max+$min) / 2;
|
|
|
86 |
if( $this->xdata[$k] > $xpoint )
|
|
|
87 |
$max=$k;
|
|
|
88 |
else
|
|
|
89 |
$min=$k;
|
|
|
90 |
}
|
|
|
91 |
|
|
|
92 |
// Each interval is interpolated by a 3:degree polynom function
|
|
|
93 |
$h = $this->xdata[$max]-$this->xdata[$min];
|
|
|
94 |
|
|
|
95 |
if( $h == 0 ) {
|
|
|
96 |
JpGraphError::RaiseL(19002);
|
|
|
97 |
//('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
|
|
98 |
}
|
|
|
99 |
|
|
|
100 |
|
|
|
101 |
$a = ($this->xdata[$max]-$xpoint)/$h;
|
|
|
102 |
$b = ($xpoint-$this->xdata[$min])/$h;
|
|
|
103 |
return $a*$this->ydata[$min]+$b*$this->ydata[$max]+
|
|
|
104 |
(($a*$a*$a-$a)*$this->y2[$min]+($b*$b*$b-$b)*$this->y2[$max])*($h*$h)/6.0;
|
|
|
105 |
}
|
|
|
106 |
}
|
|
|
107 |
|
|
|
108 |
//------------------------------------------------------------------------
|
|
|
109 |
// CLASS Bezier
|
|
|
110 |
// Create a new data array from a number of control points
|
|
|
111 |
//------------------------------------------------------------------------
|
|
|
112 |
class Bezier {
|
|
|
113 |
/**
|
|
|
114 |
* @author Thomas Despoix, openXtrem company
|
|
|
115 |
* @license released under QPL
|
|
|
116 |
* @abstract Bezier interoplated point generation,
|
|
|
117 |
* computed from control points data sets, based on Paul Bourke algorithm :
|
|
|
118 |
* http://astronomy.swin.edu.au/~pbourke/curves/bezier/
|
|
|
119 |
*/
|
|
|
120 |
var $datax = array();
|
|
|
121 |
var $datay = array();
|
|
|
122 |
var $n=0;
|
|
|
123 |
|
|
|
124 |
function Bezier($datax, $datay, $attraction_factor = 1) {
|
|
|
125 |
// Adding control point multiple time will raise their attraction power over the curve
|
|
|
126 |
$this->n = count($datax);
|
|
|
127 |
if( $this->n !== count($datay) ) {
|
|
|
128 |
JpGraphError::RaiseL(19003);
|
|
|
129 |
//('Bezier: Number of X and Y coordinates must be the same');
|
|
|
130 |
}
|
|
|
131 |
$idx=0;
|
|
|
132 |
foreach($datax as $datumx) {
|
|
|
133 |
for ($i = 0; $i < $attraction_factor; $i++) {
|
|
|
134 |
$this->datax[$idx++] = $datumx;
|
|
|
135 |
}
|
|
|
136 |
}
|
|
|
137 |
$idx=0;
|
|
|
138 |
foreach($datay as $datumy) {
|
|
|
139 |
for ($i = 0; $i < $attraction_factor; $i++) {
|
|
|
140 |
$this->datay[$idx++] = $datumy;
|
|
|
141 |
}
|
|
|
142 |
}
|
|
|
143 |
$this->n *= $attraction_factor;
|
|
|
144 |
}
|
|
|
145 |
|
|
|
146 |
function Get($steps) {
|
|
|
147 |
$datax = array();
|
|
|
148 |
$datay = array();
|
|
|
149 |
for ($i = 0; $i < $steps; $i++) {
|
|
|
150 |
list($datumx, $datumy) = $this->GetPoint((double) $i / (double) $steps);
|
|
|
151 |
$datax[] = $datumx;
|
|
|
152 |
$datay[] = $datumy;
|
|
|
153 |
}
|
|
|
154 |
|
|
|
155 |
$datax[] = end($this->datax);
|
|
|
156 |
$datay[] = end($this->datay);
|
|
|
157 |
|
|
|
158 |
return array($datax, $datay);
|
|
|
159 |
}
|
|
|
160 |
|
|
|
161 |
function GetPoint($mu) {
|
|
|
162 |
$n = $this->n - 1;
|
|
|
163 |
$k = 0;
|
|
|
164 |
$kn = 0;
|
|
|
165 |
$nn = 0;
|
|
|
166 |
$nkn = 0;
|
|
|
167 |
$blend = 0.0;
|
|
|
168 |
$newx = 0.0;
|
|
|
169 |
$newy = 0.0;
|
|
|
170 |
|
|
|
171 |
$muk = 1.0;
|
|
|
172 |
$munk = (double) pow(1-$mu,(double) $n);
|
|
|
173 |
|
|
|
174 |
for ($k = 0; $k <= $n; $k++) {
|
|
|
175 |
$nn = $n;
|
|
|
176 |
$kn = $k;
|
|
|
177 |
$nkn = $n - $k;
|
|
|
178 |
$blend = $muk * $munk;
|
|
|
179 |
$muk *= $mu;
|
|
|
180 |
$munk /= (1-$mu);
|
|
|
181 |
while ($nn >= 1) {
|
|
|
182 |
$blend *= $nn;
|
|
|
183 |
$nn--;
|
|
|
184 |
if ($kn > 1) {
|
|
|
185 |
$blend /= (double) $kn;
|
|
|
186 |
$kn--;
|
|
|
187 |
}
|
|
|
188 |
if ($nkn > 1) {
|
|
|
189 |
$blend /= (double) $nkn;
|
|
|
190 |
$nkn--;
|
|
|
191 |
}
|
|
|
192 |
}
|
|
|
193 |
$newx += $this->datax[$k] * $blend;
|
|
|
194 |
$newy += $this->datay[$k] * $blend;
|
|
|
195 |
}
|
|
|
196 |
|
|
|
197 |
return array($newx, $newy);
|
|
|
198 |
}
|
|
|
199 |
}
|
|
|
200 |
|
|
|
201 |
// EOF
|
|
|
202 |
?>
|