2388 |
jpm |
1 |
<?php
|
|
|
2 |
/**
|
|
|
3 |
* PHPExcel
|
|
|
4 |
*
|
|
|
5 |
* Copyright (c) 2006 - 2013 PHPExcel
|
|
|
6 |
*
|
|
|
7 |
* This library is free software; you can redistribute it and/or
|
|
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
|
|
9 |
* License as published by the Free Software Foundation; either
|
|
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
|
|
11 |
*
|
|
|
12 |
* This library is distributed in the hope that it will be useful,
|
|
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
15 |
* Lesser General Public License for more details.
|
|
|
16 |
*
|
|
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
|
|
18 |
* License along with this library; if not, write to the Free Software
|
|
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
20 |
*
|
|
|
21 |
* @category PHPExcel
|
|
|
22 |
* @package PHPExcel_Shared_Trend
|
|
|
23 |
* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
|
24 |
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
|
|
25 |
* @version ##VERSION##, ##DATE##
|
|
|
26 |
*/
|
|
|
27 |
|
|
|
28 |
|
|
|
29 |
/**
|
|
|
30 |
* PHPExcel_Best_Fit
|
|
|
31 |
*
|
|
|
32 |
* @category PHPExcel
|
|
|
33 |
* @package PHPExcel_Shared_Trend
|
|
|
34 |
* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
|
35 |
*/
|
|
|
36 |
class PHPExcel_Best_Fit
|
|
|
37 |
{
|
|
|
38 |
/**
|
|
|
39 |
* Indicator flag for a calculation error
|
|
|
40 |
*
|
|
|
41 |
* @var boolean
|
|
|
42 |
**/
|
|
|
43 |
protected $_error = False;
|
|
|
44 |
|
|
|
45 |
/**
|
|
|
46 |
* Algorithm type to use for best-fit
|
|
|
47 |
*
|
|
|
48 |
* @var string
|
|
|
49 |
**/
|
|
|
50 |
protected $_bestFitType = 'undetermined';
|
|
|
51 |
|
|
|
52 |
/**
|
|
|
53 |
* Number of entries in the sets of x- and y-value arrays
|
|
|
54 |
*
|
|
|
55 |
* @var int
|
|
|
56 |
**/
|
|
|
57 |
protected $_valueCount = 0;
|
|
|
58 |
|
|
|
59 |
/**
|
|
|
60 |
* X-value dataseries of values
|
|
|
61 |
*
|
|
|
62 |
* @var float[]
|
|
|
63 |
**/
|
|
|
64 |
protected $_xValues = array();
|
|
|
65 |
|
|
|
66 |
/**
|
|
|
67 |
* Y-value dataseries of values
|
|
|
68 |
*
|
|
|
69 |
* @var float[]
|
|
|
70 |
**/
|
|
|
71 |
protected $_yValues = array();
|
|
|
72 |
|
|
|
73 |
/**
|
|
|
74 |
* Flag indicating whether values should be adjusted to Y=0
|
|
|
75 |
*
|
|
|
76 |
* @var boolean
|
|
|
77 |
**/
|
|
|
78 |
protected $_adjustToZero = False;
|
|
|
79 |
|
|
|
80 |
/**
|
|
|
81 |
* Y-value series of best-fit values
|
|
|
82 |
*
|
|
|
83 |
* @var float[]
|
|
|
84 |
**/
|
|
|
85 |
protected $_yBestFitValues = array();
|
|
|
86 |
|
|
|
87 |
protected $_goodnessOfFit = 1;
|
|
|
88 |
|
|
|
89 |
protected $_stdevOfResiduals = 0;
|
|
|
90 |
|
|
|
91 |
protected $_covariance = 0;
|
|
|
92 |
|
|
|
93 |
protected $_correlation = 0;
|
|
|
94 |
|
|
|
95 |
protected $_SSRegression = 0;
|
|
|
96 |
|
|
|
97 |
protected $_SSResiduals = 0;
|
|
|
98 |
|
|
|
99 |
protected $_DFResiduals = 0;
|
|
|
100 |
|
|
|
101 |
protected $_F = 0;
|
|
|
102 |
|
|
|
103 |
protected $_slope = 0;
|
|
|
104 |
|
|
|
105 |
protected $_slopeSE = 0;
|
|
|
106 |
|
|
|
107 |
protected $_intersect = 0;
|
|
|
108 |
|
|
|
109 |
protected $_intersectSE = 0;
|
|
|
110 |
|
|
|
111 |
protected $_Xoffset = 0;
|
|
|
112 |
|
|
|
113 |
protected $_Yoffset = 0;
|
|
|
114 |
|
|
|
115 |
|
|
|
116 |
public function getError() {
|
|
|
117 |
return $this->_error;
|
|
|
118 |
} // function getBestFitType()
|
|
|
119 |
|
|
|
120 |
|
|
|
121 |
public function getBestFitType() {
|
|
|
122 |
return $this->_bestFitType;
|
|
|
123 |
} // function getBestFitType()
|
|
|
124 |
|
|
|
125 |
|
|
|
126 |
/**
|
|
|
127 |
* Return the Y-Value for a specified value of X
|
|
|
128 |
*
|
|
|
129 |
* @param float $xValue X-Value
|
|
|
130 |
* @return float Y-Value
|
|
|
131 |
*/
|
|
|
132 |
public function getValueOfYForX($xValue) {
|
|
|
133 |
return False;
|
|
|
134 |
} // function getValueOfYForX()
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
/**
|
|
|
138 |
* Return the X-Value for a specified value of Y
|
|
|
139 |
*
|
|
|
140 |
* @param float $yValue Y-Value
|
|
|
141 |
* @return float X-Value
|
|
|
142 |
*/
|
|
|
143 |
public function getValueOfXForY($yValue) {
|
|
|
144 |
return False;
|
|
|
145 |
} // function getValueOfXForY()
|
|
|
146 |
|
|
|
147 |
|
|
|
148 |
/**
|
|
|
149 |
* Return the original set of X-Values
|
|
|
150 |
*
|
|
|
151 |
* @return float[] X-Values
|
|
|
152 |
*/
|
|
|
153 |
public function getXValues() {
|
|
|
154 |
return $this->_xValues;
|
|
|
155 |
} // function getValueOfXForY()
|
|
|
156 |
|
|
|
157 |
|
|
|
158 |
/**
|
|
|
159 |
* Return the Equation of the best-fit line
|
|
|
160 |
*
|
|
|
161 |
* @param int $dp Number of places of decimal precision to display
|
|
|
162 |
* @return string
|
|
|
163 |
*/
|
|
|
164 |
public function getEquation($dp=0) {
|
|
|
165 |
return False;
|
|
|
166 |
} // function getEquation()
|
|
|
167 |
|
|
|
168 |
|
|
|
169 |
/**
|
|
|
170 |
* Return the Slope of the line
|
|
|
171 |
*
|
|
|
172 |
* @param int $dp Number of places of decimal precision to display
|
|
|
173 |
* @return string
|
|
|
174 |
*/
|
|
|
175 |
public function getSlope($dp=0) {
|
|
|
176 |
if ($dp != 0) {
|
|
|
177 |
return round($this->_slope,$dp);
|
|
|
178 |
}
|
|
|
179 |
return $this->_slope;
|
|
|
180 |
} // function getSlope()
|
|
|
181 |
|
|
|
182 |
|
|
|
183 |
/**
|
|
|
184 |
* Return the standard error of the Slope
|
|
|
185 |
*
|
|
|
186 |
* @param int $dp Number of places of decimal precision to display
|
|
|
187 |
* @return string
|
|
|
188 |
*/
|
|
|
189 |
public function getSlopeSE($dp=0) {
|
|
|
190 |
if ($dp != 0) {
|
|
|
191 |
return round($this->_slopeSE,$dp);
|
|
|
192 |
}
|
|
|
193 |
return $this->_slopeSE;
|
|
|
194 |
} // function getSlopeSE()
|
|
|
195 |
|
|
|
196 |
|
|
|
197 |
/**
|
|
|
198 |
* Return the Value of X where it intersects Y = 0
|
|
|
199 |
*
|
|
|
200 |
* @param int $dp Number of places of decimal precision to display
|
|
|
201 |
* @return string
|
|
|
202 |
*/
|
|
|
203 |
public function getIntersect($dp=0) {
|
|
|
204 |
if ($dp != 0) {
|
|
|
205 |
return round($this->_intersect,$dp);
|
|
|
206 |
}
|
|
|
207 |
return $this->_intersect;
|
|
|
208 |
} // function getIntersect()
|
|
|
209 |
|
|
|
210 |
|
|
|
211 |
/**
|
|
|
212 |
* Return the standard error of the Intersect
|
|
|
213 |
*
|
|
|
214 |
* @param int $dp Number of places of decimal precision to display
|
|
|
215 |
* @return string
|
|
|
216 |
*/
|
|
|
217 |
public function getIntersectSE($dp=0) {
|
|
|
218 |
if ($dp != 0) {
|
|
|
219 |
return round($this->_intersectSE,$dp);
|
|
|
220 |
}
|
|
|
221 |
return $this->_intersectSE;
|
|
|
222 |
} // function getIntersectSE()
|
|
|
223 |
|
|
|
224 |
|
|
|
225 |
/**
|
|
|
226 |
* Return the goodness of fit for this regression
|
|
|
227 |
*
|
|
|
228 |
* @param int $dp Number of places of decimal precision to return
|
|
|
229 |
* @return float
|
|
|
230 |
*/
|
|
|
231 |
public function getGoodnessOfFit($dp=0) {
|
|
|
232 |
if ($dp != 0) {
|
|
|
233 |
return round($this->_goodnessOfFit,$dp);
|
|
|
234 |
}
|
|
|
235 |
return $this->_goodnessOfFit;
|
|
|
236 |
} // function getGoodnessOfFit()
|
|
|
237 |
|
|
|
238 |
|
|
|
239 |
public function getGoodnessOfFitPercent($dp=0) {
|
|
|
240 |
if ($dp != 0) {
|
|
|
241 |
return round($this->_goodnessOfFit * 100,$dp);
|
|
|
242 |
}
|
|
|
243 |
return $this->_goodnessOfFit * 100;
|
|
|
244 |
} // function getGoodnessOfFitPercent()
|
|
|
245 |
|
|
|
246 |
|
|
|
247 |
/**
|
|
|
248 |
* Return the standard deviation of the residuals for this regression
|
|
|
249 |
*
|
|
|
250 |
* @param int $dp Number of places of decimal precision to return
|
|
|
251 |
* @return float
|
|
|
252 |
*/
|
|
|
253 |
public function getStdevOfResiduals($dp=0) {
|
|
|
254 |
if ($dp != 0) {
|
|
|
255 |
return round($this->_stdevOfResiduals,$dp);
|
|
|
256 |
}
|
|
|
257 |
return $this->_stdevOfResiduals;
|
|
|
258 |
} // function getStdevOfResiduals()
|
|
|
259 |
|
|
|
260 |
|
|
|
261 |
public function getSSRegression($dp=0) {
|
|
|
262 |
if ($dp != 0) {
|
|
|
263 |
return round($this->_SSRegression,$dp);
|
|
|
264 |
}
|
|
|
265 |
return $this->_SSRegression;
|
|
|
266 |
} // function getSSRegression()
|
|
|
267 |
|
|
|
268 |
|
|
|
269 |
public function getSSResiduals($dp=0) {
|
|
|
270 |
if ($dp != 0) {
|
|
|
271 |
return round($this->_SSResiduals,$dp);
|
|
|
272 |
}
|
|
|
273 |
return $this->_SSResiduals;
|
|
|
274 |
} // function getSSResiduals()
|
|
|
275 |
|
|
|
276 |
|
|
|
277 |
public function getDFResiduals($dp=0) {
|
|
|
278 |
if ($dp != 0) {
|
|
|
279 |
return round($this->_DFResiduals,$dp);
|
|
|
280 |
}
|
|
|
281 |
return $this->_DFResiduals;
|
|
|
282 |
} // function getDFResiduals()
|
|
|
283 |
|
|
|
284 |
|
|
|
285 |
public function getF($dp=0) {
|
|
|
286 |
if ($dp != 0) {
|
|
|
287 |
return round($this->_F,$dp);
|
|
|
288 |
}
|
|
|
289 |
return $this->_F;
|
|
|
290 |
} // function getF()
|
|
|
291 |
|
|
|
292 |
|
|
|
293 |
public function getCovariance($dp=0) {
|
|
|
294 |
if ($dp != 0) {
|
|
|
295 |
return round($this->_covariance,$dp);
|
|
|
296 |
}
|
|
|
297 |
return $this->_covariance;
|
|
|
298 |
} // function getCovariance()
|
|
|
299 |
|
|
|
300 |
|
|
|
301 |
public function getCorrelation($dp=0) {
|
|
|
302 |
if ($dp != 0) {
|
|
|
303 |
return round($this->_correlation,$dp);
|
|
|
304 |
}
|
|
|
305 |
return $this->_correlation;
|
|
|
306 |
} // function getCorrelation()
|
|
|
307 |
|
|
|
308 |
|
|
|
309 |
public function getYBestFitValues() {
|
|
|
310 |
return $this->_yBestFitValues;
|
|
|
311 |
} // function getYBestFitValues()
|
|
|
312 |
|
|
|
313 |
|
|
|
314 |
protected function _calculateGoodnessOfFit($sumX,$sumY,$sumX2,$sumY2,$sumXY,$meanX,$meanY, $const) {
|
|
|
315 |
$SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
|
|
|
316 |
foreach($this->_xValues as $xKey => $xValue) {
|
|
|
317 |
$bestFitY = $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
|
|
318 |
|
|
|
319 |
$SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY);
|
|
|
320 |
if ($const) {
|
|
|
321 |
$SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY);
|
|
|
322 |
} else {
|
|
|
323 |
$SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey];
|
|
|
324 |
}
|
|
|
325 |
$SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY);
|
|
|
326 |
if ($const) {
|
|
|
327 |
$SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX);
|
|
|
328 |
} else {
|
|
|
329 |
$SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey];
|
|
|
330 |
}
|
|
|
331 |
}
|
|
|
332 |
|
|
|
333 |
$this->_SSResiduals = $SSres;
|
|
|
334 |
$this->_DFResiduals = $this->_valueCount - 1 - $const;
|
|
|
335 |
|
|
|
336 |
if ($this->_DFResiduals == 0.0) {
|
|
|
337 |
$this->_stdevOfResiduals = 0.0;
|
|
|
338 |
} else {
|
|
|
339 |
$this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals);
|
|
|
340 |
}
|
|
|
341 |
if (($SStot == 0.0) || ($SSres == $SStot)) {
|
|
|
342 |
$this->_goodnessOfFit = 1;
|
|
|
343 |
} else {
|
|
|
344 |
$this->_goodnessOfFit = 1 - ($SSres / $SStot);
|
|
|
345 |
}
|
|
|
346 |
|
|
|
347 |
$this->_SSRegression = $this->_goodnessOfFit * $SStot;
|
|
|
348 |
$this->_covariance = $SScov / $this->_valueCount;
|
|
|
349 |
$this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX,2)) * ($this->_valueCount * $sumY2 - pow($sumY,2)));
|
|
|
350 |
$this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex);
|
|
|
351 |
$this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - ($sumX * $sumX) / $sumX2));
|
|
|
352 |
if ($this->_SSResiduals != 0.0) {
|
|
|
353 |
if ($this->_DFResiduals == 0.0) {
|
|
|
354 |
$this->_F = 0.0;
|
|
|
355 |
} else {
|
|
|
356 |
$this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals);
|
|
|
357 |
}
|
|
|
358 |
} else {
|
|
|
359 |
if ($this->_DFResiduals == 0.0) {
|
|
|
360 |
$this->_F = 0.0;
|
|
|
361 |
} else {
|
|
|
362 |
$this->_F = $this->_SSRegression / $this->_DFResiduals;
|
|
|
363 |
}
|
|
|
364 |
}
|
|
|
365 |
} // function _calculateGoodnessOfFit()
|
|
|
366 |
|
|
|
367 |
|
|
|
368 |
protected function _leastSquareFit($yValues, $xValues, $const) {
|
|
|
369 |
// calculate sums
|
|
|
370 |
$x_sum = array_sum($xValues);
|
|
|
371 |
$y_sum = array_sum($yValues);
|
|
|
372 |
$meanX = $x_sum / $this->_valueCount;
|
|
|
373 |
$meanY = $y_sum / $this->_valueCount;
|
|
|
374 |
$mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;
|
|
|
375 |
for($i = 0; $i < $this->_valueCount; ++$i) {
|
|
|
376 |
$xy_sum += $xValues[$i] * $yValues[$i];
|
|
|
377 |
$xx_sum += $xValues[$i] * $xValues[$i];
|
|
|
378 |
$yy_sum += $yValues[$i] * $yValues[$i];
|
|
|
379 |
|
|
|
380 |
if ($const) {
|
|
|
381 |
$mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);
|
|
|
382 |
$mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);
|
|
|
383 |
} else {
|
|
|
384 |
$mBase += $xValues[$i] * $yValues[$i];
|
|
|
385 |
$mDivisor += $xValues[$i] * $xValues[$i];
|
|
|
386 |
}
|
|
|
387 |
}
|
|
|
388 |
|
|
|
389 |
// calculate slope
|
|
|
390 |
// $this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum));
|
|
|
391 |
$this->_slope = $mBase / $mDivisor;
|
|
|
392 |
|
|
|
393 |
// calculate intersect
|
|
|
394 |
// $this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount;
|
|
|
395 |
if ($const) {
|
|
|
396 |
$this->_intersect = $meanY - ($this->_slope * $meanX);
|
|
|
397 |
} else {
|
|
|
398 |
$this->_intersect = 0;
|
|
|
399 |
}
|
|
|
400 |
|
|
|
401 |
$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum,$meanX,$meanY,$const);
|
|
|
402 |
} // function _leastSquareFit()
|
|
|
403 |
|
|
|
404 |
|
|
|
405 |
/**
|
|
|
406 |
* Define the regression
|
|
|
407 |
*
|
|
|
408 |
* @param float[] $yValues The set of Y-values for this regression
|
|
|
409 |
* @param float[] $xValues The set of X-values for this regression
|
|
|
410 |
* @param boolean $const
|
|
|
411 |
*/
|
|
|
412 |
function __construct($yValues, $xValues=array(), $const=True) {
|
|
|
413 |
// Calculate number of points
|
|
|
414 |
$nY = count($yValues);
|
|
|
415 |
$nX = count($xValues);
|
|
|
416 |
|
|
|
417 |
// Define X Values if necessary
|
|
|
418 |
if ($nX == 0) {
|
|
|
419 |
$xValues = range(1,$nY);
|
|
|
420 |
$nX = $nY;
|
|
|
421 |
} elseif ($nY != $nX) {
|
|
|
422 |
// Ensure both arrays of points are the same size
|
|
|
423 |
$this->_error = True;
|
|
|
424 |
return False;
|
|
|
425 |
}
|
|
|
426 |
|
|
|
427 |
$this->_valueCount = $nY;
|
|
|
428 |
$this->_xValues = $xValues;
|
|
|
429 |
$this->_yValues = $yValues;
|
|
|
430 |
} // function __construct()
|
|
|
431 |
|
|
|
432 |
} // class bestFit
|