2390 |
jpm |
1 |
<?php
|
|
|
2 |
/**
|
|
|
3 |
* PHPExcel
|
|
|
4 |
*
|
|
|
5 |
* Copyright (c) 2006 - 2013 PHPExcel
|
|
|
6 |
*
|
|
|
7 |
* This library is free software; you can redistribute it and/or
|
|
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
|
|
9 |
* License as published by the Free Software Foundation; either
|
|
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
|
|
11 |
*
|
|
|
12 |
* This library is distributed in the hope that it will be useful,
|
|
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
15 |
* Lesser General Public License for more details.
|
|
|
16 |
*
|
|
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
|
|
18 |
* License along with this library; if not, write to the Free Software
|
|
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
20 |
*
|
|
|
21 |
* @category PHPExcel
|
|
|
22 |
* @package PHPExcel_Shared_Trend
|
|
|
23 |
* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
|
24 |
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
|
|
25 |
* @version ##VERSION##, ##DATE##
|
|
|
26 |
*/
|
|
|
27 |
|
|
|
28 |
|
|
|
29 |
require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
|
|
|
30 |
|
|
|
31 |
|
|
|
32 |
/**
|
|
|
33 |
* PHPExcel_Logarithmic_Best_Fit
|
|
|
34 |
*
|
|
|
35 |
* @category PHPExcel
|
|
|
36 |
* @package PHPExcel_Shared_Trend
|
|
|
37 |
* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
|
38 |
*/
|
|
|
39 |
class PHPExcel_Logarithmic_Best_Fit extends PHPExcel_Best_Fit
|
|
|
40 |
{
|
|
|
41 |
/**
|
|
|
42 |
* Algorithm type to use for best-fit
|
|
|
43 |
* (Name of this trend class)
|
|
|
44 |
*
|
|
|
45 |
* @var string
|
|
|
46 |
**/
|
|
|
47 |
protected $_bestFitType = 'logarithmic';
|
|
|
48 |
|
|
|
49 |
|
|
|
50 |
/**
|
|
|
51 |
* Return the Y-Value for a specified value of X
|
|
|
52 |
*
|
|
|
53 |
* @param float $xValue X-Value
|
|
|
54 |
* @return float Y-Value
|
|
|
55 |
**/
|
|
|
56 |
public function getValueOfYForX($xValue) {
|
|
|
57 |
return $this->getIntersect() + $this->getSlope() * log($xValue - $this->_Xoffset);
|
|
|
58 |
} // function getValueOfYForX()
|
|
|
59 |
|
|
|
60 |
|
|
|
61 |
/**
|
|
|
62 |
* Return the X-Value for a specified value of Y
|
|
|
63 |
*
|
|
|
64 |
* @param float $yValue Y-Value
|
|
|
65 |
* @return float X-Value
|
|
|
66 |
**/
|
|
|
67 |
public function getValueOfXForY($yValue) {
|
|
|
68 |
return exp(($yValue - $this->getIntersect()) / $this->getSlope());
|
|
|
69 |
} // function getValueOfXForY()
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
/**
|
|
|
73 |
* Return the Equation of the best-fit line
|
|
|
74 |
*
|
|
|
75 |
* @param int $dp Number of places of decimal precision to display
|
|
|
76 |
* @return string
|
|
|
77 |
**/
|
|
|
78 |
public function getEquation($dp=0) {
|
|
|
79 |
$slope = $this->getSlope($dp);
|
|
|
80 |
$intersect = $this->getIntersect($dp);
|
|
|
81 |
|
|
|
82 |
return 'Y = '.$intersect.' + '.$slope.' * log(X)';
|
|
|
83 |
} // function getEquation()
|
|
|
84 |
|
|
|
85 |
|
|
|
86 |
/**
|
|
|
87 |
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
|
|
88 |
*
|
|
|
89 |
* @param float[] $yValues The set of Y-values for this regression
|
|
|
90 |
* @param float[] $xValues The set of X-values for this regression
|
|
|
91 |
* @param boolean $const
|
|
|
92 |
*/
|
|
|
93 |
private function _logarithmic_regression($yValues, $xValues, $const) {
|
|
|
94 |
foreach($xValues as &$value) {
|
|
|
95 |
if ($value < 0.0) {
|
|
|
96 |
$value = 0 - log(abs($value));
|
|
|
97 |
} elseif ($value > 0.0) {
|
|
|
98 |
$value = log($value);
|
|
|
99 |
}
|
|
|
100 |
}
|
|
|
101 |
unset($value);
|
|
|
102 |
|
|
|
103 |
$this->_leastSquareFit($yValues, $xValues, $const);
|
|
|
104 |
} // function _logarithmic_regression()
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
/**
|
|
|
108 |
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
|
|
109 |
*
|
|
|
110 |
* @param float[] $yValues The set of Y-values for this regression
|
|
|
111 |
* @param float[] $xValues The set of X-values for this regression
|
|
|
112 |
* @param boolean $const
|
|
|
113 |
*/
|
|
|
114 |
function __construct($yValues, $xValues=array(), $const=True) {
|
|
|
115 |
if (parent::__construct($yValues, $xValues) !== False) {
|
|
|
116 |
$this->_logarithmic_regression($yValues, $xValues, $const);
|
|
|
117 |
}
|
|
|
118 |
} // function __construct()
|
|
|
119 |
|
|
|
120 |
} // class logarithmicBestFit
|