1001 |
delphine |
1 |
<?php
|
|
|
2 |
/**
|
|
|
3 |
* Author : Julien Moquet
|
|
|
4 |
*
|
|
|
5 |
* Inspired by Proj4php from Mike Adair madairATdmsolutions.ca
|
|
|
6 |
* and Richard Greenwood rich@greenwoodma$p->com
|
|
|
7 |
* License: LGPL as per: http://www.gnu.org/copyleft/lesser.html
|
|
|
8 |
*/
|
|
|
9 |
/*******************************************************************************
|
|
|
10 |
NAME NEW ZEALAND MAP GRID
|
|
|
11 |
|
|
|
12 |
PURPOSE: Transforms input longitude and latitude to Easting and
|
|
|
13 |
Northing for the New Zealand Map Grid projection. The
|
|
|
14 |
longitude and latitude must be in radians. The Easting
|
|
|
15 |
and Northing values will be returned in meters.
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
ALGORITHM REFERENCES
|
|
|
19 |
|
|
|
20 |
1. Department of Land and Survey Technical Circular 1973/32
|
|
|
21 |
http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf
|
|
|
22 |
|
|
|
23 |
2. OSG Technical Report 4.1
|
|
|
24 |
http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf
|
|
|
25 |
|
|
|
26 |
|
|
|
27 |
IMPLEMENTATION NOTES
|
|
|
28 |
|
|
|
29 |
The two references use different symbols for the calculated values. This
|
|
|
30 |
implementation uses the variable names similar to the symbols in reference [1].
|
|
|
31 |
|
|
|
32 |
The alogrithm uses different units for delta latitude and delta longitude.
|
|
|
33 |
The delta latitude is assumed to be in units of seconds of arc x 10^-5.
|
|
|
34 |
The delta longitude is the usual radians. Look out for these conversions.
|
|
|
35 |
|
|
|
36 |
The algorithm is described using complex arithmetic. There were three
|
|
|
37 |
options:
|
|
|
38 |
* find and use a Javascript library for complex arithmetic
|
|
|
39 |
* write my own complex library
|
|
|
40 |
* expand the complex arithmetic by hand to simple arithmetic
|
|
|
41 |
|
|
|
42 |
This implementation has expanded the complex multiplication operations
|
|
|
43 |
into parallel simple arithmetic operations for the real and imaginary parts.
|
|
|
44 |
The imaginary part is way over to the right of the display; this probably
|
|
|
45 |
violates every coding standard in the world, but, to me, it makes it much
|
|
|
46 |
more obvious what is going on.
|
|
|
47 |
|
|
|
48 |
The following complex operations are used:
|
|
|
49 |
- addition
|
|
|
50 |
- multiplication
|
|
|
51 |
- division
|
|
|
52 |
- complex number raised to integer power
|
|
|
53 |
- summation
|
|
|
54 |
|
|
|
55 |
A summary of complex arithmetic operations:
|
|
|
56 |
(from http://en.wikipedia.org/wiki/Complex_arithmetic)
|
|
|
57 |
addition: (a + bi) + (c + di) = (a + c) + (b + d)i
|
|
|
58 |
subtraction: (a + bi) - (c + di) = (a - c) + (b - d)i
|
|
|
59 |
multiplication: (a + bi) x (c + di) = (ac - bd) + (bc + ad)i
|
|
|
60 |
division: (a + bi) / (c + di) = [(ac + bd)/(cc + dd)] + [(bc - ad)/(cc + dd)]i
|
|
|
61 |
|
|
|
62 |
The algorithm needs to calculate summations of simple and complex numbers. This is
|
|
|
63 |
implemented using a for-loop, pre-loading the summed value to zero.
|
|
|
64 |
|
|
|
65 |
The algorithm needs to calculate theta^2, theta^3, etc while doing a summation.
|
|
|
66 |
There are three possible implementations:
|
|
|
67 |
- use pow in the summation loop - except for complex numbers
|
|
|
68 |
- precalculate the values before running the loop
|
|
|
69 |
- calculate theta^n = theta^(n-1) * theta during the loop
|
|
|
70 |
This implementation uses the third option for both real and complex arithmetic.
|
|
|
71 |
|
|
|
72 |
For example
|
|
|
73 |
psi_n = 1;
|
|
|
74 |
sum = 0;
|
|
|
75 |
for (n = 1; n <=6; n++) {
|
|
|
76 |
psi_n1 = psi_n * psi; // calculate psi^(n+1)
|
|
|
77 |
psi_n = psi_n1;
|
|
|
78 |
sum = sum + A[n] * psi_n;
|
|
|
79 |
}
|
|
|
80 |
|
|
|
81 |
|
|
|
82 |
TEST VECTORS
|
|
|
83 |
|
|
|
84 |
NZMG E, N: 2487100.638 6751049.719 metres
|
|
|
85 |
NZGD49 long, lat: 172.739194 -34.444066 degrees
|
|
|
86 |
|
|
|
87 |
NZMG E, N: 2486533.395 6077263.661 metres
|
|
|
88 |
NZGD49 long, lat: 172.723106 -40.512409 degrees
|
|
|
89 |
|
|
|
90 |
NZMG E, N: 2216746.425 5388508.765 metres
|
|
|
91 |
NZGD49 long, lat: 169.172062 -46.651295 degrees
|
|
|
92 |
|
|
|
93 |
Note that these test vectors convert from NZMG metres to lat/long referenced
|
|
|
94 |
to NZGD49, not the more usual WGS84. The difference is about 70m N/S and about
|
|
|
95 |
10m E/W.
|
|
|
96 |
|
|
|
97 |
These test vectors are provided in reference [1]. Many more test
|
|
|
98 |
vectors are available in
|
|
|
99 |
http://www.linz.govt.nz/docs/topography/topographicdata/placenamesdatabase/nznamesmar08.zip
|
|
|
100 |
which is a catalog of names on the 260-series maps.
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
EPSG CODES
|
|
|
104 |
|
|
|
105 |
NZMG EPSG:27200
|
|
|
106 |
NZGD49 EPSG:4272
|
|
|
107 |
|
|
|
108 |
http://spatialreference.org/ defines these as
|
|
|
109 |
Proj4php.defs["EPSG:4272"] = "+proj=longlat +ellps=intl +datum=nzgd49 +no_defs ";
|
|
|
110 |
Proj4php.defs["EPSG:27200"] = "+proj=nzmg +lat_0=-41 +lon_0=173 +x_0=2510000 +y_0=6023150 +ellps=intl +datum=nzgd49 +units=m +no_defs ";
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
LICENSE
|
|
|
114 |
Copyright: Stephen Irons 2008
|
|
|
115 |
Released under terms of the LGPL as per: http://www.gnu.org/copyleft/lesser.html
|
|
|
116 |
|
|
|
117 |
* ***************************************************************************** */
|
|
|
118 |
|
|
|
119 |
/**
|
|
|
120 |
Initialize New Zealand Map Grip projection
|
|
|
121 |
*/
|
|
|
122 |
class Proj4phpProjNzmg {
|
|
|
123 |
|
|
|
124 |
/**
|
|
|
125 |
* iterations: Number of iterations to refine inverse transform.
|
|
|
126 |
* 0 -> km accuracy
|
|
|
127 |
* 1 -> m accuracy -- suitable for most mapping applications
|
|
|
128 |
* 2 -> mm accuracy
|
|
|
129 |
*/
|
|
|
130 |
protected $iterations = 1;
|
|
|
131 |
|
|
|
132 |
/**
|
|
|
133 |
*
|
|
|
134 |
*/
|
|
|
135 |
public function init() {
|
|
|
136 |
$this->A = array( );
|
|
|
137 |
$this->A[1] = +0.6399175073;
|
|
|
138 |
$this->A[2] = -0.1358797613;
|
|
|
139 |
$this->A[3] = +0.063294409;
|
|
|
140 |
$this->A[4] = -0.02526853;
|
|
|
141 |
$this->A[5] = +0.0117879;
|
|
|
142 |
$this->A[6] = -0.0055161;
|
|
|
143 |
$this->A[7] = +0.0026906;
|
|
|
144 |
$this->A[8] = -0.001333;
|
|
|
145 |
$this->A[9] = +0.00067;
|
|
|
146 |
$this->A[10] = -0.00034;
|
|
|
147 |
|
|
|
148 |
$this->B_re = array( );
|
|
|
149 |
$this->B_im = array( );
|
|
|
150 |
$this->B_re[1] = +0.7557853228;
|
|
|
151 |
$this->B_im[1] = 0.0;
|
|
|
152 |
$this->B_re[2] = +0.249204646;
|
|
|
153 |
$this->B_im[2] = +0.003371507;
|
|
|
154 |
$this->B_re[3] = -0.001541739;
|
|
|
155 |
$this->B_im[3] = +0.041058560;
|
|
|
156 |
$this->B_re[4] = -0.10162907;
|
|
|
157 |
$this->B_im[4] = +0.01727609;
|
|
|
158 |
$this->B_re[5] = -0.26623489;
|
|
|
159 |
$this->B_im[5] = -0.36249218;
|
|
|
160 |
$this->B_re[6] = -0.6870983;
|
|
|
161 |
$this->B_im[6] = -1.1651967;
|
|
|
162 |
|
|
|
163 |
$this->C_re = array( );
|
|
|
164 |
$this->C_im = array( );
|
|
|
165 |
$this->C_re[1] = +1.3231270439;
|
|
|
166 |
$this->C_im[1] = 0.0;
|
|
|
167 |
$this->C_re[2] = -0.577245789;
|
|
|
168 |
$this->C_im[2] = -0.007809598;
|
|
|
169 |
$this->C_re[3] = +0.508307513;
|
|
|
170 |
$this->C_im[3] = -0.112208952;
|
|
|
171 |
$this->C_re[4] = -0.15094762;
|
|
|
172 |
$this->C_im[4] = +0.18200602;
|
|
|
173 |
$this->C_re[5] = +1.01418179;
|
|
|
174 |
$this->C_im[5] = +1.64497696;
|
|
|
175 |
$this->C_re[6] = +1.9660549;
|
|
|
176 |
$this->C_im[6] = +2.5127645;
|
|
|
177 |
|
|
|
178 |
$this->D = array( );
|
|
|
179 |
$this->D[1] = +1.5627014243;
|
|
|
180 |
$this->D[2] = +0.5185406398;
|
|
|
181 |
$this->D[3] = -0.03333098;
|
|
|
182 |
$this->D[4] = -0.1052906;
|
|
|
183 |
$this->D[5] = -0.0368594;
|
|
|
184 |
$this->D[6] = +0.007317;
|
|
|
185 |
$this->D[7] = +0.01220;
|
|
|
186 |
$this->D[8] = +0.00394;
|
|
|
187 |
$this->D[9] = -0.0013;
|
|
|
188 |
}
|
|
|
189 |
|
|
|
190 |
/**
|
|
|
191 |
New Zealand Map Grid Forward - long/lat to x/y
|
|
|
192 |
long/lat in radians
|
|
|
193 |
*/
|
|
|
194 |
public function forward( $p ) {
|
|
|
195 |
|
|
|
196 |
$lon = $p->x;
|
|
|
197 |
$lat = $p->y;
|
|
|
198 |
|
|
|
199 |
$delta_lat = $lat - $this->lat0;
|
|
|
200 |
$delta_lon = $lon - $this->long0;
|
|
|
201 |
|
|
|
202 |
// 1. Calculate d_phi and d_psi ... // and d_lambda
|
|
|
203 |
// For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians.
|
|
|
204 |
$d_phi = $delta_lat / Proj4php::$common->SEC_TO_RAD * 1E-5;
|
|
|
205 |
$d_lambda = $delta_lon;
|
|
|
206 |
$d_phi_n = 1; // d_phi^0
|
|
|
207 |
|
|
|
208 |
$d_psi = 0;
|
|
|
209 |
for( $n = 1; $n <= 10; $n++ ) {
|
|
|
210 |
$d_phi_n = $d_phi_n * $d_phi;
|
|
|
211 |
$d_psi = $d_psi + $this->A[$n] * $d_phi_n;
|
|
|
212 |
}
|
|
|
213 |
|
|
|
214 |
// 2. Calculate theta
|
|
|
215 |
$th_re = $d_psi;
|
|
|
216 |
$th_im = $d_lambda;
|
|
|
217 |
|
|
|
218 |
// 3. Calculate z
|
|
|
219 |
$th_n_re = 1;
|
|
|
220 |
$th_n_im = 0; // theta^0
|
|
|
221 |
#$th_n_re1;
|
|
|
222 |
#$th_n_im1;
|
|
|
223 |
|
|
|
224 |
$z_re = 0;
|
|
|
225 |
$z_im = 0;
|
|
|
226 |
for( $n = 1; $n <= 6; $n++ ) {
|
|
|
227 |
$th_n_re1 = $th_n_re * $th_re - $th_n_im * $th_im;
|
|
|
228 |
$th_n_im1 = $th_n_im * $th_re + $th_n_re * $th_im;
|
|
|
229 |
$th_n_re = $th_n_re1;
|
|
|
230 |
$th_n_im = $th_n_im1;
|
|
|
231 |
$z_re = $z_re + $this->B_re[$n] * $th_n_re - $this->B_im[$n] * $th_n_im;
|
|
|
232 |
$z_im = $z_im + $this->B_im[$n] * $th_n_re + $this->B_re[$n] * $th_n_im;
|
|
|
233 |
}
|
|
|
234 |
|
|
|
235 |
// 4. Calculate easting and northing
|
|
|
236 |
$p->x = ($z_im * $this->a) + $this->x0;
|
|
|
237 |
$p->y = ($z_re * $this->a) + $this->y0;
|
|
|
238 |
|
|
|
239 |
return $p;
|
|
|
240 |
}
|
|
|
241 |
|
|
|
242 |
/**
|
|
|
243 |
New Zealand Map Grid Inverse - x/y to long/lat
|
|
|
244 |
*/
|
|
|
245 |
public function inverse( $p ) {
|
|
|
246 |
|
|
|
247 |
$x = $p->x;
|
|
|
248 |
$y = $p->y;
|
|
|
249 |
|
|
|
250 |
$delta_x = $x - $this->x0;
|
|
|
251 |
$delta_y = $y - $this->y0;
|
|
|
252 |
|
|
|
253 |
// 1. Calculate z
|
|
|
254 |
$z_re = $delta_y / $this->a;
|
|
|
255 |
$z_im = $delta_x / $this->a;
|
|
|
256 |
|
|
|
257 |
// 2a. Calculate theta - first approximation gives km accuracy
|
|
|
258 |
$z_n_re = 1;
|
|
|
259 |
$z_n_im = 0; // z^0
|
|
|
260 |
$z_n_re1;
|
|
|
261 |
$z_n_im1;
|
|
|
262 |
|
|
|
263 |
$th_re = 0;
|
|
|
264 |
$th_im = 0;
|
|
|
265 |
for( $n = 1; $n <= 6; $n++ ) {
|
|
|
266 |
$z_n_re1 = $z_n_re * $z_re - $z_n_im * $z_im;
|
|
|
267 |
$z_n_im1 = $z_n_im * $z_re + $z_n_re * $z_im;
|
|
|
268 |
$z_n_re = $z_n_re1;
|
|
|
269 |
$z_n_im = $z_n_im1;
|
|
|
270 |
$th_re = $th_re + $this->C_re[$n] * $z_n_re - $this->C_im[$n] * $z_n_im;
|
|
|
271 |
$th_im = $th_im + $this->C_im[$n] * $z_n_re + $this->C_re[$n] * $z_n_im;
|
|
|
272 |
}
|
|
|
273 |
|
|
|
274 |
// 2b. Iterate to refine the accuracy of the calculation
|
|
|
275 |
// 0 iterations gives km accuracy
|
|
|
276 |
// 1 iteration gives m accuracy -- good enough for most mapping applications
|
|
|
277 |
// 2 iterations bives mm accuracy
|
|
|
278 |
for( $i = 0; $i < $this->iterations; $i++ ) {
|
|
|
279 |
$th_n_re = $th_re;
|
|
|
280 |
$th_n_im = $th_im;
|
|
|
281 |
$th_n_re1;
|
|
|
282 |
$th_n_im1;
|
|
|
283 |
|
|
|
284 |
$num_re = $z_re;
|
|
|
285 |
$num_im = $z_im;
|
|
|
286 |
for( $n = 2; $n <= 6; $n++ ) {
|
|
|
287 |
$th_n_re1 = $th_n_re * th_re - $th_n_im * $th_im;
|
|
|
288 |
$th_n_im1 = $th_n_im * $th_re + $th_n_re * $th_im;
|
|
|
289 |
$th_n_re = $th_n_re1;
|
|
|
290 |
$th_n_im = $th_n_im1;
|
|
|
291 |
$num_re = $num_re + ($n - 1) * ($this->B_re[$n] * $th_n_re - $this->B_im[$n] * $th_n_im);
|
|
|
292 |
$num_im = $num_im + (n - 1) * ($this->B_im[$n] * $th_n_re + $this->B_re[$n] * $th_n_im);
|
|
|
293 |
}
|
|
|
294 |
|
|
|
295 |
$th_n_re = 1;
|
|
|
296 |
$th_n_im = 0;
|
|
|
297 |
$den_re = $this->B_re[1];
|
|
|
298 |
$den_im = $this->B_im[1];
|
|
|
299 |
for( $n = 2; $n <= 6; $n++ ) {
|
|
|
300 |
$th_n_re1 = $th_n_re * $th_re - $th_n_im * $th_im;
|
|
|
301 |
$th_n_im1 = $th_n_im * $th_re + $th_n_re * $th_im;
|
|
|
302 |
$th_n_re = $th_n_re1;
|
|
|
303 |
$th_n_im = $th_n_im1;
|
|
|
304 |
$den_re = $den_re + $n * ($this->B_re[$n] * $th_n_re - $this->B_im[$n] * $th_n_im);
|
|
|
305 |
$den_im = $den_im + $n * ($this->B_im[n] * $th_n_re + $this->B_re[$n] * $th_n_im);
|
|
|
306 |
}
|
|
|
307 |
|
|
|
308 |
// Complex division
|
|
|
309 |
$den2 = $den_re * $den_re + $den_im * $den_im;
|
|
|
310 |
$th_re = ($num_re * $den_re + $num_im * $den_im) / $den2;
|
|
|
311 |
$th_im = ($num_im * $den_re - $num_re * $den_im) / $den2;
|
|
|
312 |
}
|
|
|
313 |
|
|
|
314 |
// 3. Calculate d_phi ... // and d_lambda
|
|
|
315 |
$d_psi = $th_re;
|
|
|
316 |
$d_lambda = $th_im;
|
|
|
317 |
$d_psi_n = 1; // d_psi^0
|
|
|
318 |
|
|
|
319 |
$d_phi = 0;
|
|
|
320 |
for( $n = 1; $n <= 9; $n++ ) {
|
|
|
321 |
$d_psi_n = $d_psi_n * $d_psi;
|
|
|
322 |
$d_phi = $d_phi + $this->D[$n] * $d_psi_n;
|
|
|
323 |
}
|
|
|
324 |
|
|
|
325 |
// 4. Calculate latitude and longitude
|
|
|
326 |
// d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians.
|
|
|
327 |
$lat = $this->lat0 + ($d_phi * Proj4php::$common->SEC_TO_RAD * 1E5);
|
|
|
328 |
$lon = $this->long0 + $d_lambda;
|
|
|
329 |
|
|
|
330 |
$p->x = $lon;
|
|
|
331 |
$p->y = $lat;
|
|
|
332 |
|
|
|
333 |
return $p;
|
|
|
334 |
}
|
|
|
335 |
|
|
|
336 |
}
|
|
|
337 |
|
|
|
338 |
Proj4php::$proj['nzmg'] = new Proj4phpProjNzmg();
|