2390 |
jpm |
1 |
<?php
|
|
|
2 |
/**
|
|
|
3 |
* PHPExcel
|
|
|
4 |
*
|
|
|
5 |
* Copyright (c) 2006 - 2013 PHPExcel
|
|
|
6 |
*
|
|
|
7 |
* This library is free software; you can redistribute it and/or
|
|
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
|
|
9 |
* License as published by the Free Software Foundation; either
|
|
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
|
|
11 |
*
|
|
|
12 |
* This library is distributed in the hope that it will be useful,
|
|
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
15 |
* Lesser General Public License for more details.
|
|
|
16 |
*
|
|
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
|
|
18 |
* License along with this library; if not, write to the Free Software
|
|
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
20 |
*
|
|
|
21 |
* @category PHPExcel
|
|
|
22 |
* @package PHPExcel_Shared_Trend
|
|
|
23 |
* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
|
24 |
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
|
|
25 |
* @version ##VERSION##, ##DATE##
|
|
|
26 |
*/
|
|
|
27 |
|
|
|
28 |
|
|
|
29 |
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
|
|
|
30 |
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php';
|
|
|
31 |
|
|
|
32 |
|
|
|
33 |
/**
|
|
|
34 |
* PHPExcel_Polynomial_Best_Fit
|
|
|
35 |
*
|
|
|
36 |
* @category PHPExcel
|
|
|
37 |
* @package PHPExcel_Shared_Trend
|
|
|
38 |
* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
|
39 |
*/
|
|
|
40 |
class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit
|
|
|
41 |
{
|
|
|
42 |
/**
|
|
|
43 |
* Algorithm type to use for best-fit
|
|
|
44 |
* (Name of this trend class)
|
|
|
45 |
*
|
|
|
46 |
* @var string
|
|
|
47 |
**/
|
|
|
48 |
protected $_bestFitType = 'polynomial';
|
|
|
49 |
|
|
|
50 |
/**
|
|
|
51 |
* Polynomial order
|
|
|
52 |
*
|
|
|
53 |
* @protected
|
|
|
54 |
* @var int
|
|
|
55 |
**/
|
|
|
56 |
protected $_order = 0;
|
|
|
57 |
|
|
|
58 |
|
|
|
59 |
/**
|
|
|
60 |
* Return the order of this polynomial
|
|
|
61 |
*
|
|
|
62 |
* @return int
|
|
|
63 |
**/
|
|
|
64 |
public function getOrder() {
|
|
|
65 |
return $this->_order;
|
|
|
66 |
} // function getOrder()
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
/**
|
|
|
70 |
* Return the Y-Value for a specified value of X
|
|
|
71 |
*
|
|
|
72 |
* @param float $xValue X-Value
|
|
|
73 |
* @return float Y-Value
|
|
|
74 |
**/
|
|
|
75 |
public function getValueOfYForX($xValue) {
|
|
|
76 |
$retVal = $this->getIntersect();
|
|
|
77 |
$slope = $this->getSlope();
|
|
|
78 |
foreach($slope as $key => $value) {
|
|
|
79 |
if ($value != 0.0) {
|
|
|
80 |
$retVal += $value * pow($xValue, $key + 1);
|
|
|
81 |
}
|
|
|
82 |
}
|
|
|
83 |
return $retVal;
|
|
|
84 |
} // function getValueOfYForX()
|
|
|
85 |
|
|
|
86 |
|
|
|
87 |
/**
|
|
|
88 |
* Return the X-Value for a specified value of Y
|
|
|
89 |
*
|
|
|
90 |
* @param float $yValue Y-Value
|
|
|
91 |
* @return float X-Value
|
|
|
92 |
**/
|
|
|
93 |
public function getValueOfXForY($yValue) {
|
|
|
94 |
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
|
|
95 |
} // function getValueOfXForY()
|
|
|
96 |
|
|
|
97 |
|
|
|
98 |
/**
|
|
|
99 |
* Return the Equation of the best-fit line
|
|
|
100 |
*
|
|
|
101 |
* @param int $dp Number of places of decimal precision to display
|
|
|
102 |
* @return string
|
|
|
103 |
**/
|
|
|
104 |
public function getEquation($dp=0) {
|
|
|
105 |
$slope = $this->getSlope($dp);
|
|
|
106 |
$intersect = $this->getIntersect($dp);
|
|
|
107 |
|
|
|
108 |
$equation = 'Y = '.$intersect;
|
|
|
109 |
foreach($slope as $key => $value) {
|
|
|
110 |
if ($value != 0.0) {
|
|
|
111 |
$equation .= ' + '.$value.' * X';
|
|
|
112 |
if ($key > 0) {
|
|
|
113 |
$equation .= '^'.($key + 1);
|
|
|
114 |
}
|
|
|
115 |
}
|
|
|
116 |
}
|
|
|
117 |
return $equation;
|
|
|
118 |
} // function getEquation()
|
|
|
119 |
|
|
|
120 |
|
|
|
121 |
/**
|
|
|
122 |
* Return the Slope of the line
|
|
|
123 |
*
|
|
|
124 |
* @param int $dp Number of places of decimal precision to display
|
|
|
125 |
* @return string
|
|
|
126 |
**/
|
|
|
127 |
public function getSlope($dp=0) {
|
|
|
128 |
if ($dp != 0) {
|
|
|
129 |
$coefficients = array();
|
|
|
130 |
foreach($this->_slope as $coefficient) {
|
|
|
131 |
$coefficients[] = round($coefficient,$dp);
|
|
|
132 |
}
|
|
|
133 |
return $coefficients;
|
|
|
134 |
}
|
|
|
135 |
return $this->_slope;
|
|
|
136 |
} // function getSlope()
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
public function getCoefficients($dp=0) {
|
|
|
140 |
return array_merge(array($this->getIntersect($dp)),$this->getSlope($dp));
|
|
|
141 |
} // function getCoefficients()
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
/**
|
|
|
145 |
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
|
|
146 |
*
|
|
|
147 |
* @param int $order Order of Polynomial for this regression
|
|
|
148 |
* @param float[] $yValues The set of Y-values for this regression
|
|
|
149 |
* @param float[] $xValues The set of X-values for this regression
|
|
|
150 |
* @param boolean $const
|
|
|
151 |
*/
|
|
|
152 |
private function _polynomial_regression($order, $yValues, $xValues, $const) {
|
|
|
153 |
// calculate sums
|
|
|
154 |
$x_sum = array_sum($xValues);
|
|
|
155 |
$y_sum = array_sum($yValues);
|
|
|
156 |
$xx_sum = $xy_sum = 0;
|
|
|
157 |
for($i = 0; $i < $this->_valueCount; ++$i) {
|
|
|
158 |
$xy_sum += $xValues[$i] * $yValues[$i];
|
|
|
159 |
$xx_sum += $xValues[$i] * $xValues[$i];
|
|
|
160 |
$yy_sum += $yValues[$i] * $yValues[$i];
|
|
|
161 |
}
|
|
|
162 |
/*
|
|
|
163 |
* This routine uses logic from the PHP port of polyfit version 0.1
|
|
|
164 |
* written by Michael Bommarito and Paul Meagher
|
|
|
165 |
*
|
|
|
166 |
* The function fits a polynomial function of order $order through
|
|
|
167 |
* a series of x-y data points using least squares.
|
|
|
168 |
*
|
|
|
169 |
*/
|
|
|
170 |
for ($i = 0; $i < $this->_valueCount; ++$i) {
|
|
|
171 |
for ($j = 0; $j <= $order; ++$j) {
|
|
|
172 |
$A[$i][$j] = pow($xValues[$i], $j);
|
|
|
173 |
}
|
|
|
174 |
}
|
|
|
175 |
for ($i=0; $i < $this->_valueCount; ++$i) {
|
|
|
176 |
$B[$i] = array($yValues[$i]);
|
|
|
177 |
}
|
|
|
178 |
$matrixA = new Matrix($A);
|
|
|
179 |
$matrixB = new Matrix($B);
|
|
|
180 |
$C = $matrixA->solve($matrixB);
|
|
|
181 |
|
|
|
182 |
$coefficients = array();
|
|
|
183 |
for($i = 0; $i < $C->m; ++$i) {
|
|
|
184 |
$r = $C->get($i, 0);
|
|
|
185 |
if (abs($r) <= pow(10, -9)) {
|
|
|
186 |
$r = 0;
|
|
|
187 |
}
|
|
|
188 |
$coefficients[] = $r;
|
|
|
189 |
}
|
|
|
190 |
|
|
|
191 |
$this->_intersect = array_shift($coefficients);
|
|
|
192 |
$this->_slope = $coefficients;
|
|
|
193 |
|
|
|
194 |
$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum);
|
|
|
195 |
foreach($this->_xValues as $xKey => $xValue) {
|
|
|
196 |
$this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
|
|
197 |
}
|
|
|
198 |
} // function _polynomial_regression()
|
|
|
199 |
|
|
|
200 |
|
|
|
201 |
/**
|
|
|
202 |
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
|
|
203 |
*
|
|
|
204 |
* @param int $order Order of Polynomial for this regression
|
|
|
205 |
* @param float[] $yValues The set of Y-values for this regression
|
|
|
206 |
* @param float[] $xValues The set of X-values for this regression
|
|
|
207 |
* @param boolean $const
|
|
|
208 |
*/
|
|
|
209 |
function __construct($order, $yValues, $xValues=array(), $const=True) {
|
|
|
210 |
if (parent::__construct($yValues, $xValues) !== False) {
|
|
|
211 |
if ($order < $this->_valueCount) {
|
|
|
212 |
$this->_bestFitType .= '_'.$order;
|
|
|
213 |
$this->_order = $order;
|
|
|
214 |
$this->_polynomial_regression($order, $yValues, $xValues, $const);
|
|
|
215 |
if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
|
|
|
216 |
$this->_error = True;
|
|
|
217 |
}
|
|
|
218 |
} else {
|
|
|
219 |
$this->_error = True;
|
|
|
220 |
}
|
|
|
221 |
}
|
|
|
222 |
} // function __construct()
|
|
|
223 |
|
|
|
224 |
} // class polynomialBestFit
|