Subversion Repositories Sites.tela-botanica.org

Rev

Rev 609 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
7 david 1
<?php
2
/*=======================================================================
3
// File:	JPGRAPH_PIE3D.PHP
4
// Description: 3D Pie plot extension for JpGraph
5
// Created: 	2001-03-24
6
// Author:	Johan Persson (johanp@aditus.nu)
7
// Ver:		$Id: jpgraph_pie3d.php,v 1.1 2004/06/15 10:13:19 jpm Exp $
8
//
9
// License:	This code is released under QPL
10
// Copyright (C) 2001,2002 Johan Persson
11
//========================================================================
12
*/
13
 
14
//===================================================
15
// CLASS PiePlot3D
16
// Description: Plots a 3D pie with a specified projection
17
// angle between 20 and 70 degrees.
18
//===================================================
19
class PiePlot3D extends PiePlot {
20
    var $labelhintcolor="red",$showlabelhint=true,$labelmargin=0.30;
21
    var $angle=50;
22
    var $edgecolor="", $edgeweight=1;
23
    var $iThickness=false;
24
 
25
//---------------
26
// CONSTRUCTOR
27
    function PiePlot3d(&$data) {
28
	$this->radius = 0.5;
29
	$this->data = $data;
30
	$this->title = new Text("");
31
	$this->title->SetFont(FF_FONT1,FS_BOLD);
32
	$this->value = new DisplayValue();
33
	$this->value->Show();
34
	$this->value->SetFormat('%.0f%%');
35
    }
36
 
37
//---------------
38
// PUBLIC METHODS
39
 
40
    // Set label arrays
41
    function SetLegends($aLegend) {
42
	$this->legends = array_reverse($aLegend);
43
    }
44
 
45
    function SetSliceColors($aColors) {
46
	$this->setslicecolors = $aColors;
47
    }
48
 
49
    function Legend(&$aGraph) {
50
	parent::Legend($aGraph);
51
	$aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
52
    }
53
 
54
    function SetCSIMTargets($targets,$alts=null) {
55
	$this->csimtargets = $targets;
56
	$this->csimalts = $alts;
57
    }
58
 
59
    // Should the slices be separated by a line? If color is specified as "" no line
60
    // will be used to separate pie slices.
61
    function SetEdge($aColor,$aWeight=1) {
62
	$this->edgecolor = $aColor;
63
	$this->edgeweight = $aWeight;
64
    }
65
 
66
    // Specify projection angle for 3D in degrees
67
    // Must be between 20 and 70 degrees
68
    function SetAngle($a) {
69
	if( $a<5 || $a>90 )
70
	    JpGraphError::Raise("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
71
	else
72
	    $this->angle = $a;
73
    }
74
 
75
    function AddSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) {  //Slice number, ellipse centre (x,y), height, width, start angle, end angle
76
 
77
	$sa *= M_PI/180;
78
	$ea *= M_PI/180;
79
 
80
	//add coordinates of the centre to the map
81
	$coords = "$xc, $yc";
82
 
83
	//add coordinates of the first point on the arc to the map
84
	$xp = floor($width*cos($sa)/2+$xc);
85
	$yp = floor($yc-$height*sin($sa)/2);
86
	$coords.= ", $xp, $yp";
87
 
88
	//If on the front half, add the thickness offset
89
	if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
90
	    $yp = floor($yp+$thick);
91
	    $coords.= ", $xp, $yp";
92
	}
93
 
94
	//add coordinates every 0.2 radians
95
	$a=$sa+0.2;
96
	while ($a<$ea) {
97
	    $xp = floor($width*cos($a)/2+$xc);
98
	    if ($a >= M_PI && $a <= 2*M_PI*1.01) {
99
		$yp = floor($yc-($height*sin($a)/2)+$thick);
100
	    } else {
101
		$yp = floor($yc-$height*sin($a)/2);
102
	    }
103
	    $coords.= ", $xp, $yp";
104
	    $a += 0.2;
105
	}
106
 
107
	//Add the last point on the arc
108
	$xp = floor($width*cos($ea)/2+$xc);
109
	$yp = floor($yc-$height*sin($ea)/2);
110
 
111
 
112
	if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
113
	    $coords.= ", $xp, ".floor($yp+$thick);
114
	}
115
	$coords.= ", $xp, $yp";
116
	$alt='';
117
	if( !empty($this->csimalts[$i]) ) {
118
	    $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
119
	    $alt="alt=\"$tmp\" title=\"$tmp\"";
120
	}
121
	if( !empty($this->csimtargets[$i]) )
122
	    $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\" $alt>\n";
123
    }
124
 
125
    function SetLabels($aLabels,$aLblPosAdj="auto") {
126
	$this->labels = $aLabels;
127
	$this->ilabelposadj=$aLblPosAdj;
128
    }
129
 
130
 
131
    // Distance from the pie to the labels
132
    function SetLabelMargin($m) {
133
	assert($m>0 && $m<1);
134
	$this->labelmargin=$m;
135
    }
136
 
137
    // Show a thin line from the pie to the label for a specific slice
138
    function ShowLabelHint($f=true) {
139
	$this->showlabelhint=$f;
140
    }
141
 
142
    // Set color of hint line to label for each slice
143
    function SetLabelHintColor($c) {
144
	$this->labelhintcolor=$c;
145
    }
146
 
147
    function SetHeight($aHeight) {
148
      $this->iThickness = $aHeight;
149
    }
150
 
151
 
152
// Normalize Angle between 0-360
153
    function NormAngle($a) {
154
	// Normalize anle to 0 to 2M_PI
155
	//
156
	if( $a > 0 ) {
157
	    while($a > 360) $a -= 360;
158
	}
159
	else {
160
	    while($a < 0) $a += 360;
161
	}
162
	if( $a < 0 )
163
	    $a = 360 + $a;
164
 
165
	if( $a == 360 ) $a=0;
166
	return $a;
167
    }
168
 
169
 
170
 
171
// Draw one 3D pie slice at position ($xc,$yc) with height $z
172
    function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
173
 
174
	// Due to the way the 3D Pie algorithm works we are
175
	// guaranteed that any slice we get into this method
176
	// belongs to either the left or right side of the
177
	// pie ellipse. Hence, no slice will cross 90 or 270
178
	// point.
179
	if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
180
	    JpGraphError::Raise('Internal assertion failed. Pie3D::Pie3DSlice');
181
	    exit(1);
182
	}
183
 
184
	$p[] = array();
185
 
186
	// Setup pre-calculated values
187
	$rsa = $sa/180*M_PI;	// to Rad
188
	$rea = $ea/180*M_PI;	// to Rad
189
	$sinsa = sin($rsa);
190
	$cossa = cos($rsa);
191
	$sinea = sin($rea);
192
	$cosea = cos($rea);
193
 
194
	// p[] is the points for the overall slice and
195
	// pt[] is the points for the top pie
196
 
197
	// Angular step when approximating the arc with a polygon train.
198
	$step = 0.05;
199
 
200
	if( $sa >= 270 ) {
201
	    if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
202
		if( $ea > 0 && $ea <= 90 ) {
203
		    // Adjust angle to simplify conditions in loops
204
		    $rea += 2*M_PI;
205
		}
206
 
207
		$p = array($xc,$yc,$xc,$yc+$z,
208
			   $xc+$w*$cossa,$z+$yc-$h*$sinsa);
209
		$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
210
 
211
		for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
212
		    $tca = cos($a);
213
		    $tsa = sin($a);
214
		    $p[] = $xc+$w*$tca;
215
		    $p[] = $z+$yc-$h*$tsa;
216
		    $pt[] = $xc+$w*$tca;
217
		    $pt[] = $yc-$h*$tsa;
218
		}
219
 
220
		$pt[] = $xc+$w;
221
		$pt[] = $yc;
222
 
223
		$p[] = $xc+$w;
224
		$p[] = $z+$yc;
225
		$p[] = $xc+$w;
226
		$p[] = $yc;
227
		$p[] = $xc;
228
		$p[] = $yc;
229
 
230
		for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
231
		    $pt[] = $xc + $w*cos($a);
232
		    $pt[] = $yc - $h*sin($a);
233
		}
234
 
235
		$pt[] = $xc+$w*$cosea;
236
		$pt[] = $yc-$h*$sinea;
237
		$pt[] = $xc;
238
		$pt[] = $yc;
239
 
240
	    }
241
	    else {
242
		$p = array($xc,$yc,$xc,$yc+$z,
243
			   $xc+$w*$cossa,$z+$yc-$h*$sinsa);
244
		$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
245
 
246
		$rea = $rea == 0.0 ? 2*M_PI : $rea;
247
		for( $a=$rsa; $a < $rea; $a += $step ) {
248
		    $tca = cos($a);
249
		    $tsa = sin($a);
250
		    $p[] = $xc+$w*$tca;
251
		    $p[] = $z+$yc-$h*$tsa;
252
		    $pt[] = $xc+$w*$tca;
253
		    $pt[] = $yc-$h*$tsa;
254
		}
255
 
256
		$pt[] = $xc+$w*$cosea;
257
		$pt[] = $yc-$h*$sinea;
258
		$pt[] = $xc;
259
		$pt[] = $yc;
260
 
261
		$p[] = $xc+$w*$cosea;
262
		$p[] = $z+$yc-$h*$sinea;
263
		$p[] = $xc+$w*$cosea;
264
		$p[] = $yc-$h*$sinea;
265
		$p[] = $xc;
266
		$p[] = $yc;
267
	    }
268
	}
269
	elseif( $sa >= 180 ) {
270
	    $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
271
	    $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
272
 
273
	    for( $a=$rea; $a>$rsa; $a -= $step ) {
274
		$tca = cos($a);
275
		$tsa = sin($a);
276
		$p[] = $xc+$w*$tca;
277
		$p[] = $z+$yc-$h*$tsa;
278
		$pt[] = $xc+$w*$tca;
279
		$pt[] = $yc-$h*$tsa;
280
	    }
281
 
282
	    $pt[] = $xc+$w*$cossa;
283
	    $pt[] = $yc-$h*$sinsa;
284
	    $pt[] = $xc;
285
	    $pt[] = $yc;
286
 
287
	    $p[] = $xc+$w*$cossa;
288
	    $p[] = $z+$yc-$h*$sinsa;
289
	    $p[] = $xc+$w*$cossa;
290
	    $p[] = $yc-$h*$sinsa;
291
	    $p[] = $xc;
292
	    $p[] = $yc;
293
 
294
	}
295
	elseif( $sa >= 90 ) {
296
	    if( $ea > 180 ) {
297
		$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
298
		$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
299
 
300
		for( $a=$rea; $a > M_PI; $a -= $step ) {
301
		    $tca = cos($a);
302
		    $tsa = sin($a);
303
		    $p[] = $xc+$w*$tca;
304
		    $p[] = $z + $yc - $h*$tsa;
305
		    $pt[] = $xc+$w*$tca;
306
		    $pt[] = $yc-$h*$tsa;
307
		}
308
 
309
		$p[] = $xc-$w;
310
		$p[] = $z+$yc;
311
		$p[] = $xc-$w;
312
		$p[] = $yc;
313
		$p[] = $xc;
314
		$p[] = $yc;
315
 
316
		$pt[] = $xc-$w;
317
		$pt[] = $z+$yc;
318
		$pt[] = $xc-$w;
319
		$pt[] = $yc;
320
 
321
		for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
322
		    $pt[] = $xc + $w*cos($a);
323
		    $pt[] = $yc - $h*sin($a);
324
		}
325
 
326
		$pt[] = $xc+$w*$cossa;
327
		$pt[] = $yc-$h*$sinsa;
328
		$pt[] = $xc;
329
		$pt[] = $yc;
330
 
331
	    }
332
	    else { // $sa >= 90 && $ea <= 180
333
		$p = array($xc,$yc,$xc,$yc+$z,
334
			   $xc+$w*$cosea,$z+$yc-$h*$sinea,
335
			   $xc+$w*$cosea,$yc-$h*$sinea,
336
			   $xc,$yc);
337
 
338
		$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
339
 
340
		for( $a=$rea; $a>$rsa; $a -= $step ) {
341
		    $pt[] = $xc + $w*cos($a);
342
		    $pt[] = $yc - $h*sin($a);
343
		}
344
 
345
		$pt[] = $xc+$w*$cossa;
346
		$pt[] = $yc-$h*$sinsa;
347
		$pt[] = $xc;
348
		$pt[] = $yc;
349
 
350
	    }
351
	}
352
	else { // sa > 0 && ea < 90
353
 
354
	    $p = array($xc,$yc,$xc,$yc+$z,
355
		       $xc+$w*$cossa,$z+$yc-$h*$sinsa,
356
		       $xc+$w*$cossa,$yc-$h*$sinsa,
357
		       $xc,$yc);
358
 
359
	    $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
360
 
361
	    for( $a=$rsa; $a < $rea; $a += $step ) {
362
		$pt[] = $xc + $w*cos($a);
363
		$pt[] = $yc - $h*sin($a);
364
	    }
365
 
366
	    $pt[] = $xc+$w*$cosea;
367
	    $pt[] = $yc-$h*$sinea;
368
	    $pt[] = $xc;
369
	    $pt[] = $yc;
370
	}
371
 
372
	$img->PushColor($fillcolor.":".$shadow);
373
	$img->FilledPolygon($p);
374
	$img->PopColor();
375
 
376
	$img->PushColor($fillcolor);
377
	$img->FilledPolygon($pt);
378
	$img->PopColor();
379
    }
380
 
381
// Draw a 3D Pie
382
    function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
383
		   $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
384
 
385
	//---------------------------------------------------------------------------
386
	// As usual the algorithm get more complicated than I originally
387
	// envisioned. I believe that this is as simple as it is possible
388
	// to do it with the features I want. It's a good exercise to start
389
	// thinking on how to do this to convince your self that all this
390
	// is really needed for the general case.
391
	//
392
	// The algorithm two draw 3D pies without "real 3D" is done in
393
	// two steps.
394
	// First imagine the pie cut in half through a thought line between
395
	// 12'a clock and 6'a clock. It now easy to imagine that we can plot
396
	// the individual slices for each half by starting with the topmost
397
	// pie slice and continue down to 6'a clock.
398
	//
399
	// In the algortithm this is done in three principal steps
400
	// Step 1. Do the knife cut to ensure by splitting slices that extends
401
	// over the cut line. This is done by splitting the original slices into
402
	// upto 3 subslices.
403
	// Step 2. Find the top slice for each half
404
	// Step 3. Draw the slices from top to bottom
405
	//
406
	// The thing that slightly complicates this scheme with all the
407
	// angle comparisons below is that we can have an arbitrary start
408
	// angle so we must take into account the different equivalence classes.
409
	// For the same reason we must walk through the angle array in a
410
	// modulo fashion.
411
	//
412
	// Limitations of algorithm:
413
	// * A small exploded slice which crosses the 270 degree point
414
	//   will get slightly nagged close to the center due to the fact that
415
	//   we print the slices in Z-order and that the slice left part
416
	//   get printed first and might get slightly nagged by a larger
417
	//   slice on the right side just before the right part of the small
418
	//   slice. Not a major problem though.
419
	//---------------------------------------------------------------------------
420
 
421
 
422
	// Determine the height of the ellippse which gives an
423
	// indication of the inclination angle
424
	$h = ($angle/90.0)*$d;
425
	$sum = 0;
426
	for($i=0; $i<count($data); ++$i ) {
427
	    $sum += $data[$i];
428
	}
429
 
430
	// Special optimization
431
	if( $sum==0 ) return;
432
 
433
	// Setup the start
434
	$accsum = 0;
435
	$a = $startangle;
436
	$a = $this->NormAngle($a);
437
 
438
	//
439
	// Step 1 . Split all slices that crosses 90 or 270
440
	//
441
	$idx=0;
442
	$adjexplode=array();
443
	$numcolors = count($colors);
444
	for($i=0; $i<count($data); ++$i, ++$idx ) {
445
	    $da = $data[$i]/$sum * 360;
446
 
447
	    if( empty($this->explode_radius[$i]) )
448
		$this->explode_radius[$i]=0;
449
 
450
	    $expscale=1;
451
	    if( $aaoption == 1 )
452
		$expscale=2;
453
 
454
	    $la = $a + $da/2;
455
	    $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
456
		              $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
457
	    $adjexplode[$idx] = $explode;
458
	    $labeldata[$i] = array($la,$explode[0],$explode[1]);
459
	    $originalangles[$i] = array($a,$a+$da);
460
 
461
	    $ne = $this->NormAngle($a+$da);
462
	    if( $da <= 180 ) {
463
		// If the slice size is <= 90 it can at maximum cut across
464
		// one boundary (either 90 or 270) where it needs to be split
465
		$split=-1; // no split
466
		if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
467
		    (($da <= 180 && $da >90)  && (($a < 90 || $a >= 270) && $ne > 90)) ) {
468
		    $split = 90;
469
		}
470
		elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
471
		        (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
472
		    $split = 270;
473
		}
474
		if( $split > 0 ) { // split in two
475
		    $angles[$idx] = array($a,$split);
476
		    $adjcolors[$idx] = $colors[$i % $numcolors];
477
		    $adjexplode[$idx] = $explode;
478
		    $angles[++$idx] = array($split,$ne);
479
		    $adjcolors[$idx] = $colors[$i % $numcolors];
480
		    $adjexplode[$idx] = $explode;
481
		}
482
		else { // no split
483
		    $angles[$idx] = array($a,$ne);
484
		    $adjcolors[$idx] = $colors[$i  % $numcolors];
485
		    $adjexplode[$idx] = $explode;
486
		}
487
	    }
488
	    else {
489
		// da>180
490
		// Slice may, depending on position, cross one or two
491
		// bonudaries
492
 
493
		if( $a < 90 )
494
		    $split = 90;
495
		elseif( $a <= 270 )
496
		    $split = 270;
497
		else
498
		    $split = 90;
499
 
500
		$angles[$idx] = array($a,$split);
501
		$adjcolors[$idx] = $colors[$i % $numcolors];
502
		$adjexplode[$idx] = $explode;
503
		//if( $a+$da > 360-$split ) {
504
		// For slices larger than 270 degrees we might cross
505
		// another boundary as well. This means that we must
506
		// split the slice further. The comparison gets a little
507
		// bit complicated since we must take into accound that
508
		// a pie might have a startangle >0 and hence a slice might
509
		// wrap around the 0 angle.
510
		// Three cases:
511
		//  a) Slice starts before 90 and hence gets a split=90, but
512
		//     we must also check if we need to split at 270
513
		//  b) Slice starts after 90 but before 270 and slices
514
		//     crosses 90 (after a wrap around of 0)
515
		//  c) If start is > 270 (hence the firstr split is at 90)
516
		//     and the slice is so large that it goes all the way
517
		//     around 270.
518
		if( ($a < 90 && ($a+$da > 270)) ||
519
		    ($a > 90 && $a<=270 && ($a+$da>360+90) ) ||
520
		    ($a > 270 && $this->NormAngle($a+$da)>270) ) {
521
		    $angles[++$idx] = array($split,360-$split);
522
		    $adjcolors[$idx] = $colors[$i % $numcolors];
523
		    $adjexplode[$idx] = $explode;
524
		    $angles[++$idx] = array(360-$split,$ne);
525
		    $adjcolors[$idx] = $colors[$i % $numcolors];
526
		    $adjexplode[$idx] = $explode;
527
		}
528
		else {
529
		    // Just a simple split to the previous decided
530
		    // angle.
531
		    $angles[++$idx] = array($split,$ne);
532
		    $adjcolors[$idx] = $colors[$i % $numcolors];
533
		    $adjexplode[$idx] = $explode;
534
		}
535
	    }
536
	    $a += $da;
537
	    $a = $this->NormAngle($a);
538
	}
539
 
540
	// Total number of slices
541
	$n = count($angles);
542
 
543
	for($i=0; $i<$n; ++$i) {
544
	    list($dbgs,$dbge) = $angles[$i];
545
	}
546
 
547
	//
548
	// Step 2. Find start index (first pie that starts in upper left quadrant)
549
	//
550
	$minval = $angles[0][0];
551
	$min = 0;
552
	for( $i=0; $i<$n; ++$i ) {
553
	    if( $angles[$i][0] < $minval ) {
554
		$minval = $angles[$i][0];
555
		$min = $i;
556
	    }
557
	}
558
	$j = $min;
559
	$cnt = 0;
560
	while( $angles[$j][1] <= 90 ) {
561
	    $j++;
562
	    if( $j>=$n) {
563
		$j=0;
564
	    }
565
	    if( $cnt > $n ) {
566
		JpGraphError::Raise("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
567
	    }
568
	    ++$cnt;
569
	}
570
	$start = $j;
571
 
572
	//
573
	// Step 3. Print slices in z-order
574
	//
575
	$cnt = 0;
576
 
577
	// First stroke all the slices between 90 and 270 (left half circle)
578
	// counterclockwise
579
 
580
	while( $angles[$j][0] < 270  && $aaoption !== 2 ) {
581
 
582
	    list($x,$y) = $adjexplode[$j];
583
 
584
	    $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
585
			      $z,$adjcolors[$j],$shadow);
586
 
587
	    $last = array($x,$y,$j);
588
 
589
	    $j++;
590
	    if( $j >= $n ) $j=0;
591
	    if( $cnt > $n ) {
592
		JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
593
	    }
594
	    ++$cnt;
595
	}
596
 
597
	$slice_left = $n-$cnt;
598
	$j=$start-1;
599
	if($j<0) $j=$n-1;
600
	$cnt = 0;
601
 
602
	// The stroke all slices from 90 to -90 (right half circle)
603
	// clockwise
604
	while( $cnt < $slice_left  && $aaoption !== 2 ) {
605
 
606
	    list($x,$y) = $adjexplode[$j];
607
 
608
	    $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
609
			      $z,$adjcolors[$j],$shadow);
610
	    $j--;
611
	    if( $cnt > $n ) {
612
		JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
613
	    }
614
	    if($j<0) $j=$n-1;
615
	    $cnt++;
616
	}
617
 
618
	// Now do a special thing. Stroke the last slice on the left
619
	// halfcircle one more time.  This is needed in the case where
620
	// the slice close to 270 have been exploded. In that case the
621
	// part of the slice close to the center of the pie might be
622
	// slightly nagged.
623
	if( $aaoption !== 2 )
624
	    $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
625
			      $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
626
 
627
 
628
	if( $aaoption !== 1 ) {
629
	    // Now print possible labels and add csim
630
	    $img->SetFont($this->value->ff,$this->value->fs);
631
	    $margin = $img->GetFontHeight()/2;
632
	    for($i=0; $i < count($data); ++$i ) {
633
		$la = $labeldata[$i][0];
634
		$x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin);
635
		$y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin);
636
		if( $la > 180 && $la < 360 ) $y += $z;
637
		if( $this->labeltype == 0 )
638
		    if( $sum > 0 )
639
			$l = 100*$data[$i]/$sum;
640
		    else
641
			$l = 0;
642
		else
643
		    $l = $data[$i];
644
		if( isset($this->labels[$i]) && is_string($this->labels[$i]) )
645
		    $l=sprintf($this->labels[$i],$l);
646
 
647
		$this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
648
 
649
		$this->AddSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
650
				      $originalangles[$i][0],$originalangles[$i][1]);
651
	    }
652
	}
653
 
654
	//
655
	// Finally add potential lines in pie
656
	//
657
 
658
	if( $edgecolor=="" || $aaoption !== 0 ) return;
659
 
660
	$accsum = 0;
661
	$a = $startangle;
662
	$a = $this->NormAngle($a);
663
 
664
	$a *= M_PI/180.0;
665
 
666
	$idx=0;
667
	$img->PushColor($edgecolor);
668
	$img->SetLineWeight($edgeweight);
669
 
670
	$fulledge = true;
671
	for($i=0; $i < count($data) && $fulledge; ++$i ) {
672
	    if( empty($this->explode_radius[$i]) )
673
		$this->explode_radius[$i]=0;
674
	    if( $this->explode_radius[$i] > 0 ) {
675
		$fulledge = false;
676
	    }
677
	}
678
 
679
 
680
	for($i=0; $i < count($data); ++$i, ++$idx ) {
681
 
682
	    $da = $data[$i]/$sum * 2*M_PI;
683
	    $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
684
					$this->explode_radius[$i],$fulledge);
685
	    $a += $da;
686
	}
687
	$img->PopColor();
688
    }
689
 
690
    function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
691
	$step = 0.02;
692
 
693
	if( $exploderadius > 0 ) {
694
	    $la = ($sa+$ea)/2;
695
	    $xc += $exploderadius*cos($la);
696
	    $yc -= $exploderadius*sin($la) * ($h/$w) ;
697
 
698
	}
699
 
700
	$p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
701
 
702
	for($a=$sa; $a < $ea; $a += $step ) {
703
	    $p[] = $xc + $w*cos($a);
704
	    $p[] = $yc - $h*sin($a);
705
	}
706
 
707
	$p[] = $xc+$w*cos($ea);
708
	$p[] = $yc-$h*sin($ea);
709
	$p[] = $xc;
710
	$p[] = $yc;
711
 
712
	$img->SetColor($edgecolor);
713
	$img->Polygon($p);
714
 
715
	// Unfortunately we can't really draw the full edge around the whole of
716
	// of the slice if any of the slices are exploded. The reason is that
717
	// this algorithm is to simply. There are cases where the edges will
718
	// "overwrite" other slices when they have been exploded.
719
	// Doing the full, proper 3D hidden lines stiff is actually quite
720
	// tricky. So for exploded pies we only draw the top edge. Not perfect
721
	// but the "real" solution is much more complicated.
722
	if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
723
 
724
	    if($sa < M_PI && $ea > M_PI)
725
		$sa = M_PI;
726
 
727
	    if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) )
728
		$ea = 2*M_PI;
729
 
730
	    if( $sa >= M_PI && $ea <= 2*M_PI ) {
731
		$p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
732
			   $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
733
 
734
		for($a=$sa+$step; $a < $ea; $a += $step ) {
735
		    $p[] = $xc + $w*cos($a);
736
		    $p[] = $z + $yc - $h*sin($a);
737
		}
738
		$p[] = $xc + $w*cos($ea);
739
		$p[] = $z + $yc - $h*sin($ea);
740
		$p[] = $xc + $w*cos($ea);
741
		$p[] = $yc - $h*sin($ea);
742
		$img->SetColor($edgecolor);
743
		$img->Polygon($p);
744
	    }
745
	}
746
    }
747
 
748
    function Stroke($img,$aaoption=0) {
749
 
750
	// If user hasn't set the colors use the theme array
751
   	if( $this->setslicecolors==null ) {
752
	    $colors = array_keys($img->rgb->rgb_table);
753
	    sort($colors);
754
	    $idx_a=$this->themearr[$this->theme];
755
	    $ca = array();
756
	    $n = count($idx_a);
757
	    for($i=0; $i < $n; ++$i)
758
		$ca[$i] = $colors[$idx_a[$i]];
759
	}
760
   	else {
761
	    $ca = $this->setslicecolors;
762
	}
763
 
764
	if( $this->posx <= 1 && $this->posx > 0 )
765
	    $xc = round($this->posx*$img->width);
766
	else
767
	    $xc = $this->posx ;
768
 
769
	if( $this->posy <= 1 && $this->posy > 0 )
770
	    $yc = round($this->posy*$img->height);
771
	else
772
	    $yc = $this->posy ;
773
 
774
	if( $this->radius <= 1 ) {
775
	    $width = floor($this->radius*min($img->width,$img->height));
776
	    // Make sure that the pie doesn't overflow the image border
777
	    // The 0.9 factor is simply an extra margin to leave some space
778
	    // between the pie an the border of the image.
779
	    $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
780
	}
781
	else {
782
	    $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
783
	}
784
 
785
	// Add a sanity check for width
786
	if( $width < 1 ) {
787
	    JpGraphError::Raise("Width for 3D Pie is 0. Specify a size > 0");
788
	    exit();
789
	}
790
 
791
	// Establish a thickness. By default the thickness is a fifth of the
792
	// pie slice width (=pie radius) but since the perspective depends
793
	// on the inclination angle we use some heuristics to make the edge
794
	// slightly thicker the less the angle.
795
 
796
	// Has user specified an absolute thickness? In that case use
797
	// that instead
798
 
799
	if( $this->iThickness ) {
800
	  $thick = $this->iThickness;
801
	  $thick *= ($aaoption === 1 ? 2 : 1 );
802
	}
803
	else
804
	  $thick = $width/12;
805
	$a = $this->angle;
806
	if( $a <= 30 ) $thick *= 1.6;
807
	elseif( $a <= 40 ) $thick *= 1.4;
808
	elseif( $a <= 50 ) $thick *= 1.2;
809
	elseif( $a <= 60 ) $thick *= 1.0;
810
	elseif( $a <= 70 ) $thick *= 0.8;
811
	elseif( $a <= 80 ) $thick *= 0.7;
812
	else $thick *= 0.6;
813
 
814
	$thick = floor($thick);
815
 
816
	if( $this->explode_all )
817
	    for($i=0;$i<count($this->data);++$i)
818
		$this->explode_radius[$i]=$this->explode_r;
819
 
820
	$this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
821
	             $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
822
 
823
	// Adjust title position
824
	if( $aaoption != 1 ) {
825
	    $this->title->Pos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin,			      "center","bottom");
826
	    $this->title->Stroke($img);
827
	}
828
    }
829
 
830
//---------------
831
// PRIVATE METHODS
832
 
833
    // Position the labels of each slice
834
    function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
835
	$this->value->halign="left";
836
	$this->value->valign="top";
837
	$this->value->margin=0;
838
 
839
	// Position the axis title.
840
	// dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
841
	// that intersects with the extension of the corresponding axis. The code looks a little
842
	// bit messy but this is really the only way of having a reasonable position of the
843
	// axis titles.
844
	$img->SetFont($this->value->ff,$this->value->fs,$this->value->fsize);
845
	$h=$img->GetTextHeight($label);
846
	// For numeric values the format of the display value
847
	// must be taken into account
848
	if( is_numeric($label) ) {
849
	    if( $label > 0 )
850
		$w=$img->GetTextWidth(sprintf($this->value->format,$label));
851
	    else
852
		$w=$img->GetTextWidth(sprintf($this->value->negormat,$label));
853
	}
854
	else
855
	    $w=$img->GetTextWidth($label);
856
	while( $a > 2*M_PI ) $a -= 2*M_PI;
857
	if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
858
	if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
859
	if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
860
	if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
861
 
862
	if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
863
	if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
864
	if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
865
	if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
866
	if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
867
 
868
	$x = round($xp-$dx*$w);
869
	$y = round($yp-$dy*$h);
870
 
871
	/*
872
        // Mark anchor point for debugging
873
	$img->SetColor('red');
874
	$img->Line($xp-10,$yp,$xp+10,$yp);
875
	$img->Line($xp,$yp-10,$xp,$yp+10);
876
	*/
877
 
878
	$this->value->Stroke($img,$label,$x,$y);
879
    }
880
} // Class
881
 
882
/* EOF */
883
?>