2150 |
mathias |
1 |
<?php
|
|
|
2 |
/*=======================================================================
|
|
|
3 |
// File: JPGRAPH_REGSTAT.PHP
|
|
|
4 |
// Description: Regression and statistical analysis helper classes
|
|
|
5 |
// Created: 2002-12-01
|
|
|
6 |
// Author: Johan Persson (johanp@aditus.nu)
|
|
|
7 |
// Ver: $Id: jpgraph_regstat.php,v 1.1 2004/06/15 10:13:19 jpm Exp $
|
|
|
8 |
//
|
|
|
9 |
// License: This code is released under QPL
|
|
|
10 |
// Copyright (C) 2002 Johan Persson
|
|
|
11 |
//========================================================================
|
|
|
12 |
*/
|
|
|
13 |
|
|
|
14 |
//------------------------------------------------------------------------
|
|
|
15 |
// CLASS Spline
|
|
|
16 |
// Create a new data array from an existing data array but with more points.
|
|
|
17 |
// The new points are interpolated using a cubic spline algorithm
|
|
|
18 |
//------------------------------------------------------------------------
|
|
|
19 |
class Spline {
|
|
|
20 |
// 3:rd degree polynom approximation
|
|
|
21 |
|
|
|
22 |
var $xdata,$ydata; // Data vectors
|
|
|
23 |
var $y2; // 2:nd derivate of ydata
|
|
|
24 |
var $n=0;
|
|
|
25 |
|
|
|
26 |
function Spline($xdata,$ydata) {
|
|
|
27 |
$this->y2 = array();
|
|
|
28 |
$this->xdata = $xdata;
|
|
|
29 |
$this->ydata = $ydata;
|
|
|
30 |
|
|
|
31 |
$n = count($ydata);
|
|
|
32 |
$this->n = $n;
|
|
|
33 |
|
|
|
34 |
// Natural spline 2:derivate == 0 at endpoints
|
|
|
35 |
$this->y2[0] = 0.0;
|
|
|
36 |
$this->y2[$n-1] = 0.0;
|
|
|
37 |
$delta[0] = 0.0;
|
|
|
38 |
|
|
|
39 |
// Calculate 2:nd derivate
|
|
|
40 |
for($i=1; $i < $n-1; ++$i) {
|
|
|
41 |
$d = ($xdata[$i+1]-$xdata[$i-1]);
|
|
|
42 |
if( $d == 0 ) {
|
|
|
43 |
JpGraphError::Raise('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
|
|
44 |
}
|
|
|
45 |
$s = ($xdata[$i]-$xdata[$i-1])/$d;
|
|
|
46 |
$p = $s*$this->y2[$i-1]+2.0;
|
|
|
47 |
$this->y2[$i] = ($s-1.0)/$p;
|
|
|
48 |
$delta[$i] = ($ydata[$i+1]-$ydata[$i])/($xdata[$i+1]-$xdata[$i]) -
|
|
|
49 |
($ydata[$i]-$ydata[$i-1])/($xdata[$i]-$xdata[$i-1]);
|
|
|
50 |
$delta[$i] = (6.0*$delta[$i]/($xdata[$i+1]-$xdata[$i-1])-$s*$delta[$i-1])/$p;
|
|
|
51 |
}
|
|
|
52 |
|
|
|
53 |
// Backward substitution
|
|
|
54 |
for( $j=$n-2; $j >= 0; --$j ) {
|
|
|
55 |
$this->y2[$j] = $this->y2[$j]*$this->y2[$j+1] + $delta[$j];
|
|
|
56 |
}
|
|
|
57 |
}
|
|
|
58 |
|
|
|
59 |
// Return the two new data vectors
|
|
|
60 |
function Get($num=50) {
|
|
|
61 |
$n = $this->n ;
|
|
|
62 |
$step = ($this->xdata[$n-1]-$this->xdata[0]) / ($num-1);
|
|
|
63 |
$xnew=array();
|
|
|
64 |
$ynew=array();
|
|
|
65 |
$xnew[0] = $this->xdata[0];
|
|
|
66 |
$ynew[0] = $this->ydata[0];
|
|
|
67 |
for( $j=1; $j < $num; ++$j ) {
|
|
|
68 |
$xnew[$j] = $xnew[0]+$j*$step;
|
|
|
69 |
$ynew[$j] = $this->Interpolate($xnew[$j]);
|
|
|
70 |
}
|
|
|
71 |
return array($xnew,$ynew);
|
|
|
72 |
}
|
|
|
73 |
|
|
|
74 |
// Return a single interpolated Y-value from an x value
|
|
|
75 |
function Interpolate($xpoint) {
|
|
|
76 |
|
|
|
77 |
$max = $this->n-1;
|
|
|
78 |
$min = 0;
|
|
|
79 |
|
|
|
80 |
// Binary search to find interval
|
|
|
81 |
while( $max-$min > 1 ) {
|
|
|
82 |
$k = ($max+$min) / 2;
|
|
|
83 |
if( $this->xdata[$k] > $xpoint )
|
|
|
84 |
$max=$k;
|
|
|
85 |
else
|
|
|
86 |
$min=$k;
|
|
|
87 |
}
|
|
|
88 |
|
|
|
89 |
// Each interval is interpolated by a 3:degree polynom function
|
|
|
90 |
$h = $this->xdata[$max]-$this->xdata[$min];
|
|
|
91 |
|
|
|
92 |
if( $h == 0 ) {
|
|
|
93 |
JpGraphError::Raise('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
|
|
94 |
}
|
|
|
95 |
|
|
|
96 |
|
|
|
97 |
$a = ($this->xdata[$max]-$xpoint)/$h;
|
|
|
98 |
$b = ($xpoint-$this->xdata[$min])/$h;
|
|
|
99 |
return $a*$this->ydata[$min]+$b*$this->ydata[$max]+
|
|
|
100 |
(($a*$a*$a-$a)*$this->y2[$min]+($b*$b*$b-$b)*$this->y2[$max])*($h*$h)/6.0;
|
|
|
101 |
}
|
|
|
102 |
}
|
|
|
103 |
|
|
|
104 |
// EOF
|
|
|
105 |
?>
|