Subversion Repositories Applications.papyrus

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2150 mathias 1
<?php
2
/*=======================================================================
3
// File:	JPGRAPH_PIE3D.PHP
4
// Description: 3D Pie plot extension for JpGraph
5
// Created: 	2001-03-24
6
// Ver:		$Id: jpgraph_pie3d.php 781 2006-10-08 08:07:47Z ljp $
7
//
8
// Copyright (c) Aditus Consulting. All rights reserved.
9
//========================================================================
10
*/
11
 
12
//===================================================
13
// CLASS PiePlot3D
14
// Description: Plots a 3D pie with a specified projection
15
// angle between 20 and 70 degrees.
16
//===================================================
17
class PiePlot3D extends PiePlot {
18
    private $labelhintcolor="red",$showlabelhint=true;
19
    private $angle=50;
20
    private $edgecolor="", $edgeweight=1;
21
    private $iThickness=false;
22
 
23
//---------------
24
// CONSTRUCTOR
25
    function PiePlot3d($data) {
26
	$this->radius = 0.5;
27
	$this->data = $data;
28
	$this->title = new Text("");
29
	$this->title->SetFont(FF_FONT1,FS_BOLD);
30
	$this->value = new DisplayValue();
31
	$this->value->Show();
32
	$this->value->SetFormat('%.0f%%');
33
    }
34
 
35
//---------------
36
// PUBLIC METHODS
37
 
38
    // Set label arrays
39
    function SetLegends($aLegend) {
40
	$this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
41
    }
42
 
43
    function SetSliceColors($aColors) {
44
	$this->setslicecolors = $aColors;
45
    }
46
 
47
    function Legend($aGraph) {
48
	parent::Legend($aGraph);
49
	$aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
50
    }
51
 
52
    function SetCSIMTargets($targets,$alts=null) {
53
	$this->csimtargets = $targets;
54
	$this->csimalts = $alts;
55
    }
56
 
57
    // Should the slices be separated by a line? If color is specified as "" no line
58
    // will be used to separate pie slices.
59
    function SetEdge($aColor='black',$aWeight=1) {
60
	$this->edgecolor = $aColor;
61
	$this->edgeweight = $aWeight;
62
    }
63
 
64
    // Dummy function to make Pie3D behave in a similair way to 2D
65
    function ShowBorder($exterior=true,$interior=true) {
66
	JpGraphError::RaiseL(14001);
67
//('Pie3D::ShowBorder() . Deprecated function. Use Pie3D::SetEdge() to control the edges around slices.');
68
    }
69
 
70
    // Specify projection angle for 3D in degrees
71
    // Must be between 20 and 70 degrees
72
    function SetAngle($a) {
73
	if( $a<5 || $a>90 )
74
	    JpGraphError::RaiseL(14002);
75
//("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
76
	else
77
	    $this->angle = $a;
78
    }
79
 
80
    function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) {  //Slice number, ellipse centre (x,y), height, width, start angle, end angle
81
 
82
	$sa *= M_PI/180;
83
	$ea *= M_PI/180;
84
 
85
	//add coordinates of the centre to the map
86
	$coords = "$xc, $yc";
87
 
88
	//add coordinates of the first point on the arc to the map
89
	$xp = floor($width*cos($sa)/2+$xc);
90
	$yp = floor($yc-$height*sin($sa)/2);
91
	$coords.= ", $xp, $yp";
92
 
93
	//If on the front half, add the thickness offset
94
	if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
95
	    $yp = floor($yp+$thick);
96
	    $coords.= ", $xp, $yp";
97
	}
98
 
99
	//add coordinates every 0.2 radians
100
	$a=$sa+0.2;
101
	while ($a<$ea) {
102
	    $xp = floor($width*cos($a)/2+$xc);
103
	    if ($a >= M_PI && $a <= 2*M_PI*1.01) {
104
		$yp = floor($yc-($height*sin($a)/2)+$thick);
105
	    } else {
106
		$yp = floor($yc-$height*sin($a)/2);
107
	    }
108
	    $coords.= ", $xp, $yp";
109
	    $a += 0.2;
110
	}
111
 
112
	//Add the last point on the arc
113
	$xp = floor($width*cos($ea)/2+$xc);
114
	$yp = floor($yc-$height*sin($ea)/2);
115
 
116
 
117
	if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
118
	    $coords.= ", $xp, ".floor($yp+$thick);
119
	}
120
	$coords.= ", $xp, $yp";
121
	$alt='';
122
	if( !empty($this->csimalts[$i]) ) {
123
	    $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
124
	    $alt="alt=\"$tmp\" title=\"$tmp\"";
125
	}
126
	if( !empty($this->csimtargets[$i]) )
127
	    $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\" $alt />\n";
128
    }
129
 
130
    function SetLabels($aLabels,$aLblPosAdj="auto") {
131
	$this->labels = $aLabels;
132
	$this->ilabelposadj=$aLblPosAdj;
133
    }
134
 
135
 
136
    // Distance from the pie to the labels
137
    function SetLabelMargin($m) {
138
	$this->value->SetMargin($m);
139
    }
140
 
141
    // Show a thin line from the pie to the label for a specific slice
142
    function ShowLabelHint($f=true) {
143
	$this->showlabelhint=$f;
144
    }
145
 
146
    // Set color of hint line to label for each slice
147
    function SetLabelHintColor($c) {
148
	$this->labelhintcolor=$c;
149
    }
150
 
151
    function SetHeight($aHeight) {
152
      $this->iThickness = $aHeight;
153
    }
154
 
155
 
156
// Normalize Angle between 0-360
157
    function NormAngle($a) {
158
	// Normalize anle to 0 to 2M_PI
159
	//
160
	if( $a > 0 ) {
161
	    while($a > 360) $a -= 360;
162
	}
163
	else {
164
	    while($a < 0) $a += 360;
165
	}
166
	if( $a < 0 )
167
	    $a = 360 + $a;
168
 
169
	if( $a == 360 ) $a=0;
170
	return $a;
171
    }
172
 
173
 
174
 
175
// Draw one 3D pie slice at position ($xc,$yc) with height $z
176
    function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
177
 
178
	// Due to the way the 3D Pie algorithm works we are
179
	// guaranteed that any slice we get into this method
180
	// belongs to either the left or right side of the
181
	// pie ellipse. Hence, no slice will cross 90 or 270
182
	// point.
183
	if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
184
	    JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
185
	    exit(1);
186
	}
187
 
188
	$p[] = array();
189
 
190
	// Setup pre-calculated values
191
	$rsa = $sa/180*M_PI;	// to Rad
192
	$rea = $ea/180*M_PI;	// to Rad
193
	$sinsa = sin($rsa);
194
	$cossa = cos($rsa);
195
	$sinea = sin($rea);
196
	$cosea = cos($rea);
197
 
198
	// p[] is the points for the overall slice and
199
	// pt[] is the points for the top pie
200
 
201
	// Angular step when approximating the arc with a polygon train.
202
	$step = 0.05;
203
 
204
	if( $sa >= 270 ) {
205
	    if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
206
		if( $ea > 0 && $ea <= 90 ) {
207
		    // Adjust angle to simplify conditions in loops
208
		    $rea += 2*M_PI;
209
		}
210
 
211
		$p = array($xc,$yc,$xc,$yc+$z,
212
			   $xc+$w*$cossa,$z+$yc-$h*$sinsa);
213
		$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
214
 
215
		for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
216
		    $tca = cos($a);
217
		    $tsa = sin($a);
218
		    $p[] = $xc+$w*$tca;
219
		    $p[] = $z+$yc-$h*$tsa;
220
		    $pt[] = $xc+$w*$tca;
221
		    $pt[] = $yc-$h*$tsa;
222
		}
223
 
224
		$pt[] = $xc+$w;
225
		$pt[] = $yc;
226
 
227
		$p[] = $xc+$w;
228
		$p[] = $z+$yc;
229
		$p[] = $xc+$w;
230
		$p[] = $yc;
231
		$p[] = $xc;
232
		$p[] = $yc;
233
 
234
		for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
235
		    $pt[] = $xc + $w*cos($a);
236
		    $pt[] = $yc - $h*sin($a);
237
		}
238
 
239
		$pt[] = $xc+$w*$cosea;
240
		$pt[] = $yc-$h*$sinea;
241
		$pt[] = $xc;
242
		$pt[] = $yc;
243
 
244
	    }
245
	    else {
246
		$p = array($xc,$yc,$xc,$yc+$z,
247
			   $xc+$w*$cossa,$z+$yc-$h*$sinsa);
248
		$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
249
 
250
		$rea = $rea == 0.0 ? 2*M_PI : $rea;
251
		for( $a=$rsa; $a < $rea; $a += $step ) {
252
		    $tca = cos($a);
253
		    $tsa = sin($a);
254
		    $p[] = $xc+$w*$tca;
255
		    $p[] = $z+$yc-$h*$tsa;
256
		    $pt[] = $xc+$w*$tca;
257
		    $pt[] = $yc-$h*$tsa;
258
		}
259
 
260
		$pt[] = $xc+$w*$cosea;
261
		$pt[] = $yc-$h*$sinea;
262
		$pt[] = $xc;
263
		$pt[] = $yc;
264
 
265
		$p[] = $xc+$w*$cosea;
266
		$p[] = $z+$yc-$h*$sinea;
267
		$p[] = $xc+$w*$cosea;
268
		$p[] = $yc-$h*$sinea;
269
		$p[] = $xc;
270
		$p[] = $yc;
271
	    }
272
	}
273
	elseif( $sa >= 180 ) {
274
	    $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
275
	    $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
276
 
277
	    for( $a=$rea; $a>$rsa; $a -= $step ) {
278
		$tca = cos($a);
279
		$tsa = sin($a);
280
		$p[] = $xc+$w*$tca;
281
		$p[] = $z+$yc-$h*$tsa;
282
		$pt[] = $xc+$w*$tca;
283
		$pt[] = $yc-$h*$tsa;
284
	    }
285
 
286
	    $pt[] = $xc+$w*$cossa;
287
	    $pt[] = $yc-$h*$sinsa;
288
	    $pt[] = $xc;
289
	    $pt[] = $yc;
290
 
291
	    $p[] = $xc+$w*$cossa;
292
	    $p[] = $z+$yc-$h*$sinsa;
293
	    $p[] = $xc+$w*$cossa;
294
	    $p[] = $yc-$h*$sinsa;
295
	    $p[] = $xc;
296
	    $p[] = $yc;
297
 
298
	}
299
	elseif( $sa >= 90 ) {
300
	    if( $ea > 180 ) {
301
		$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
302
		$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
303
 
304
		for( $a=$rea; $a > M_PI; $a -= $step ) {
305
		    $tca = cos($a);
306
		    $tsa = sin($a);
307
		    $p[] = $xc+$w*$tca;
308
		    $p[] = $z + $yc - $h*$tsa;
309
		    $pt[] = $xc+$w*$tca;
310
		    $pt[] = $yc-$h*$tsa;
311
		}
312
 
313
		$p[] = $xc-$w;
314
		$p[] = $z+$yc;
315
		$p[] = $xc-$w;
316
		$p[] = $yc;
317
		$p[] = $xc;
318
		$p[] = $yc;
319
 
320
		$pt[] = $xc-$w;
321
		$pt[] = $z+$yc;
322
		$pt[] = $xc-$w;
323
		$pt[] = $yc;
324
 
325
		for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
326
		    $pt[] = $xc + $w*cos($a);
327
		    $pt[] = $yc - $h*sin($a);
328
		}
329
 
330
		$pt[] = $xc+$w*$cossa;
331
		$pt[] = $yc-$h*$sinsa;
332
		$pt[] = $xc;
333
		$pt[] = $yc;
334
 
335
	    }
336
	    else { // $sa >= 90 && $ea <= 180
337
		$p = array($xc,$yc,$xc,$yc+$z,
338
			   $xc+$w*$cosea,$z+$yc-$h*$sinea,
339
			   $xc+$w*$cosea,$yc-$h*$sinea,
340
			   $xc,$yc);
341
 
342
		$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
343
 
344
		for( $a=$rea; $a>$rsa; $a -= $step ) {
345
		    $pt[] = $xc + $w*cos($a);
346
		    $pt[] = $yc - $h*sin($a);
347
		}
348
 
349
		$pt[] = $xc+$w*$cossa;
350
		$pt[] = $yc-$h*$sinsa;
351
		$pt[] = $xc;
352
		$pt[] = $yc;
353
 
354
	    }
355
	}
356
	else { // sa > 0 && ea < 90
357
 
358
	    $p = array($xc,$yc,$xc,$yc+$z,
359
		       $xc+$w*$cossa,$z+$yc-$h*$sinsa,
360
		       $xc+$w*$cossa,$yc-$h*$sinsa,
361
		       $xc,$yc);
362
 
363
	    $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
364
 
365
	    for( $a=$rsa; $a < $rea; $a += $step ) {
366
		$pt[] = $xc + $w*cos($a);
367
		$pt[] = $yc - $h*sin($a);
368
	    }
369
 
370
	    $pt[] = $xc+$w*$cosea;
371
	    $pt[] = $yc-$h*$sinea;
372
	    $pt[] = $xc;
373
	    $pt[] = $yc;
374
	}
375
 
376
	$img->PushColor($fillcolor.":".$shadow);
377
	$img->FilledPolygon($p);
378
	$img->PopColor();
379
 
380
	$img->PushColor($fillcolor);
381
	$img->FilledPolygon($pt);
382
	$img->PopColor();
383
    }
384
 
385
    function SetStartAngle($aStart) {
386
	if( $aStart < 0 || $aStart > 360 ) {
387
	    JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
388
	}
389
	$this->startangle = $aStart;
390
    }
391
 
392
// Draw a 3D Pie
393
    function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
394
		   $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
395
 
396
	//---------------------------------------------------------------------------
397
	// As usual the algorithm get more complicated than I originally
398
	// envisioned. I believe that this is as simple as it is possible
399
	// to do it with the features I want. It's a good exercise to start
400
	// thinking on how to do this to convince your self that all this
401
	// is really needed for the general case.
402
	//
403
	// The algorithm two draw 3D pies without "real 3D" is done in
404
	// two steps.
405
	// First imagine the pie cut in half through a thought line between
406
	// 12'a clock and 6'a clock. It now easy to imagine that we can plot
407
	// the individual slices for each half by starting with the topmost
408
	// pie slice and continue down to 6'a clock.
409
	//
410
	// In the algortithm this is done in three principal steps
411
	// Step 1. Do the knife cut to ensure by splitting slices that extends
412
	// over the cut line. This is done by splitting the original slices into
413
	// upto 3 subslices.
414
	// Step 2. Find the top slice for each half
415
	// Step 3. Draw the slices from top to bottom
416
	//
417
	// The thing that slightly complicates this scheme with all the
418
	// angle comparisons below is that we can have an arbitrary start
419
	// angle so we must take into account the different equivalence classes.
420
	// For the same reason we must walk through the angle array in a
421
	// modulo fashion.
422
	//
423
	// Limitations of algorithm:
424
	// * A small exploded slice which crosses the 270 degree point
425
	//   will get slightly nagged close to the center due to the fact that
426
	//   we print the slices in Z-order and that the slice left part
427
	//   get printed first and might get slightly nagged by a larger
428
	//   slice on the right side just before the right part of the small
429
	//   slice. Not a major problem though.
430
	//---------------------------------------------------------------------------
431
 
432
 
433
	// Determine the height of the ellippse which gives an
434
	// indication of the inclination angle
435
	$h = ($angle/90.0)*$d;
436
	$sum = 0;
437
	for($i=0; $i<count($data); ++$i ) {
438
	    $sum += $data[$i];
439
	}
440
 
441
	// Special optimization
442
	if( $sum==0 ) return;
443
 
444
	if( $this->labeltype == 2 ) {
445
	    $this->adjusted_data = $this->AdjPercentage($data);
446
	}
447
 
448
	// Setup the start
449
	$accsum = 0;
450
	$a = $startangle;
451
	$a = $this->NormAngle($a);
452
 
453
	//
454
	// Step 1 . Split all slices that crosses 90 or 270
455
	//
456
	$idx=0;
457
	$adjexplode=array();
458
	$numcolors = count($colors);
459
	for($i=0; $i<count($data); ++$i, ++$idx ) {
460
	    $da = $data[$i]/$sum * 360;
461
 
462
	    if( empty($this->explode_radius[$i]) )
463
		$this->explode_radius[$i]=0;
464
 
465
	    $expscale=1;
466
	    if( $aaoption == 1 )
467
		$expscale=2;
468
 
469
	    $la = $a + $da/2;
470
	    $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
471
		              $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
472
	    $adjexplode[$idx] = $explode;
473
	    $labeldata[$i] = array($la,$explode[0],$explode[1]);
474
	    $originalangles[$i] = array($a,$a+$da);
475
 
476
	    $ne = $this->NormAngle($a+$da);
477
	    if( $da <= 180 ) {
478
		// If the slice size is <= 90 it can at maximum cut across
479
		// one boundary (either 90 or 270) where it needs to be split
480
		$split=-1; // no split
481
		if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
482
		    (($da <= 180 && $da >90)  && (($a < 90 || $a >= 270) && $ne > 90)) ) {
483
		    $split = 90;
484
		}
485
		elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
486
		        (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
487
		    $split = 270;
488
		}
489
		if( $split > 0 ) { // split in two
490
		    $angles[$idx] = array($a,$split);
491
		    $adjcolors[$idx] = $colors[$i % $numcolors];
492
		    $adjexplode[$idx] = $explode;
493
		    $angles[++$idx] = array($split,$ne);
494
		    $adjcolors[$idx] = $colors[$i % $numcolors];
495
		    $adjexplode[$idx] = $explode;
496
		}
497
		else { // no split
498
		    $angles[$idx] = array($a,$ne);
499
		    $adjcolors[$idx] = $colors[$i  % $numcolors];
500
		    $adjexplode[$idx] = $explode;
501
		}
502
	    }
503
	    else {
504
		// da>180
505
		// Slice may, depending on position, cross one or two
506
		// bonudaries
507
 
508
		if( $a < 90 )
509
		    $split = 90;
510
		elseif( $a <= 270 )
511
		    $split = 270;
512
		else
513
		    $split = 90;
514
 
515
		$angles[$idx] = array($a,$split);
516
		$adjcolors[$idx] = $colors[$i % $numcolors];
517
		$adjexplode[$idx] = $explode;
518
		//if( $a+$da > 360-$split ) {
519
		// For slices larger than 270 degrees we might cross
520
		// another boundary as well. This means that we must
521
		// split the slice further. The comparison gets a little
522
		// bit complicated since we must take into accound that
523
		// a pie might have a startangle >0 and hence a slice might
524
		// wrap around the 0 angle.
525
		// Three cases:
526
		//  a) Slice starts before 90 and hence gets a split=90, but
527
		//     we must also check if we need to split at 270
528
		//  b) Slice starts after 90 but before 270 and slices
529
		//     crosses 90 (after a wrap around of 0)
530
		//  c) If start is > 270 (hence the firstr split is at 90)
531
		//     and the slice is so large that it goes all the way
532
		//     around 270.
533
		if( ($a < 90 && ($a+$da > 270)) ||
534
		    ($a > 90 && $a<=270 && ($a+$da>360+90) ) ||
535
		    ($a > 270 && $this->NormAngle($a+$da)>270) ) {
536
		    $angles[++$idx] = array($split,360-$split);
537
		    $adjcolors[$idx] = $colors[$i % $numcolors];
538
		    $adjexplode[$idx] = $explode;
539
		    $angles[++$idx] = array(360-$split,$ne);
540
		    $adjcolors[$idx] = $colors[$i % $numcolors];
541
		    $adjexplode[$idx] = $explode;
542
		}
543
		else {
544
		    // Just a simple split to the previous decided
545
		    // angle.
546
		    $angles[++$idx] = array($split,$ne);
547
		    $adjcolors[$idx] = $colors[$i % $numcolors];
548
		    $adjexplode[$idx] = $explode;
549
		}
550
	    }
551
	    $a += $da;
552
	    $a = $this->NormAngle($a);
553
	}
554
 
555
	// Total number of slices
556
	$n = count($angles);
557
 
558
	for($i=0; $i<$n; ++$i) {
559
	    list($dbgs,$dbge) = $angles[$i];
560
	}
561
 
562
	//
563
	// Step 2. Find start index (first pie that starts in upper left quadrant)
564
	//
565
	$minval = $angles[0][0];
566
	$min = 0;
567
	for( $i=0; $i<$n; ++$i ) {
568
	    if( $angles[$i][0] < $minval ) {
569
		$minval = $angles[$i][0];
570
		$min = $i;
571
	    }
572
	}
573
	$j = $min;
574
	$cnt = 0;
575
	while( $angles[$j][1] <= 90 ) {
576
	    $j++;
577
	    if( $j>=$n) {
578
		$j=0;
579
	    }
580
	    if( $cnt > $n ) {
581
		JpGraphError::RaiseL(14005);
582
//("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
583
	    }
584
	    ++$cnt;
585
	}
586
	$start = $j;
587
 
588
	//
589
	// Step 3. Print slices in z-order
590
	//
591
	$cnt = 0;
592
 
593
	// First stroke all the slices between 90 and 270 (left half circle)
594
	// counterclockwise
595
 
596
	while( $angles[$j][0] < 270  && $aaoption !== 2 ) {
597
 
598
	    list($x,$y) = $adjexplode[$j];
599
 
600
	    $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
601
			      $z,$adjcolors[$j],$shadow);
602
 
603
	    $last = array($x,$y,$j);
604
 
605
	    $j++;
606
	    if( $j >= $n ) $j=0;
607
	    if( $cnt > $n ) {
608
		JpGraphError::RaiseL(14006);
609
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
610
	    }
611
	    ++$cnt;
612
	}
613
 
614
	$slice_left = $n-$cnt;
615
	$j=$start-1;
616
	if($j<0) $j=$n-1;
617
	$cnt = 0;
618
 
619
	// The stroke all slices from 90 to -90 (right half circle)
620
	// clockwise
621
	while( $cnt < $slice_left  && $aaoption !== 2 ) {
622
 
623
	    list($x,$y) = $adjexplode[$j];
624
 
625
	    $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
626
			      $z,$adjcolors[$j],$shadow);
627
	    $j--;
628
	    if( $cnt > $n ) {
629
		JpGraphError::RaiseL(14006);
630
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
631
	    }
632
	    if($j<0) $j=$n-1;
633
	    $cnt++;
634
	}
635
 
636
	// Now do a special thing. Stroke the last slice on the left
637
	// halfcircle one more time.  This is needed in the case where
638
	// the slice close to 270 have been exploded. In that case the
639
	// part of the slice close to the center of the pie might be
640
	// slightly nagged.
641
	if( $aaoption !== 2 )
642
	    $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
643
			      $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
644
 
645
 
646
	if( $aaoption !== 1 ) {
647
	    // Now print possible labels and add csim
648
	    $this->value->ApplyFont($img);
649
	    $margin = $img->GetFontHeight()/2 + $this->value->margin ;
650
	    for($i=0; $i < count($data); ++$i ) {
651
		$la = $labeldata[$i][0];
652
		$x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj;
653
		$y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj;
654
		if( $this->ilabelposadj >= 1.0 ) {
655
		    if( $la > 180 && $la < 360 ) $y += $z;
656
		}
657
		if( $this->labeltype == 0 ) {
658
		    if( $sum > 0 )
659
			$l = 100*$data[$i]/$sum;
660
		    else
661
			$l = 0;
662
		}
663
		elseif( $this->labeltype == 1 ) {
664
		    $l = $data[$i];
665
		}
666
		else {
667
		    $l = $this->adjusted_data[$i];
668
		}
669
		if( isset($this->labels[$i]) && is_string($this->labels[$i]) )
670
		    $l=sprintf($this->labels[$i],$l);
671
 
672
		$this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
673
 
674
		$this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
675
				      $originalangles[$i][0],$originalangles[$i][1]);
676
	    }
677
	}
678
 
679
	//
680
	// Finally add potential lines in pie
681
	//
682
 
683
	if( $edgecolor=="" || $aaoption !== 0 ) return;
684
 
685
	$accsum = 0;
686
	$a = $startangle;
687
	$a = $this->NormAngle($a);
688
 
689
	$a *= M_PI/180.0;
690
 
691
	$idx=0;
692
	$img->PushColor($edgecolor);
693
	$img->SetLineWeight($edgeweight);
694
 
695
	$fulledge = true;
696
	for($i=0; $i < count($data) && $fulledge; ++$i ) {
697
	    if( empty($this->explode_radius[$i]) )
698
		$this->explode_radius[$i]=0;
699
	    if( $this->explode_radius[$i] > 0 ) {
700
		$fulledge = false;
701
	    }
702
	}
703
 
704
 
705
	for($i=0; $i < count($data); ++$i, ++$idx ) {
706
 
707
	    $da = $data[$i]/$sum * 2*M_PI;
708
	    $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
709
					$this->explode_radius[$i],$fulledge);
710
	    $a += $da;
711
	}
712
	$img->PopColor();
713
    }
714
 
715
    function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
716
	$step = 0.02;
717
 
718
	if( $exploderadius > 0 ) {
719
	    $la = ($sa+$ea)/2;
720
	    $xc += $exploderadius*cos($la);
721
	    $yc -= $exploderadius*sin($la) * ($h/$w) ;
722
 
723
	}
724
 
725
	$p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
726
 
727
	for($a=$sa; $a < $ea; $a += $step ) {
728
	    $p[] = $xc + $w*cos($a);
729
	    $p[] = $yc - $h*sin($a);
730
	}
731
 
732
	$p[] = $xc+$w*cos($ea);
733
	$p[] = $yc-$h*sin($ea);
734
	$p[] = $xc;
735
	$p[] = $yc;
736
 
737
	$img->SetColor($edgecolor);
738
	$img->Polygon($p);
739
 
740
	// Unfortunately we can't really draw the full edge around the whole of
741
	// of the slice if any of the slices are exploded. The reason is that
742
	// this algorithm is to simply. There are cases where the edges will
743
	// "overwrite" other slices when they have been exploded.
744
	// Doing the full, proper 3D hidden lines stiff is actually quite
745
	// tricky. So for exploded pies we only draw the top edge. Not perfect
746
	// but the "real" solution is much more complicated.
747
	if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
748
 
749
	    if($sa < M_PI && $ea > M_PI)
750
		$sa = M_PI;
751
 
752
	    if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) )
753
		$ea = 2*M_PI;
754
 
755
	    if( $sa >= M_PI && $ea <= 2*M_PI ) {
756
		$p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
757
			   $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
758
 
759
		for($a=$sa+$step; $a < $ea; $a += $step ) {
760
		    $p[] = $xc + $w*cos($a);
761
		    $p[] = $z + $yc - $h*sin($a);
762
		}
763
		$p[] = $xc + $w*cos($ea);
764
		$p[] = $z + $yc - $h*sin($ea);
765
		$p[] = $xc + $w*cos($ea);
766
		$p[] = $yc - $h*sin($ea);
767
		$img->SetColor($edgecolor);
768
		$img->Polygon($p);
769
	    }
770
	}
771
    }
772
 
773
    function Stroke($img,$aaoption=0) {
774
	$n = count($this->data);
775
 
776
	// If user hasn't set the colors use the theme array
777
   	if( $this->setslicecolors==null ) {
778
	    $colors = array_keys($img->rgb->rgb_table);
779
	    sort($colors);
780
	    $idx_a=$this->themearr[$this->theme];
781
	    $ca = array();
782
	    $m = count($idx_a);
783
	    for($i=0; $i < $m; ++$i)
784
		$ca[$i] = $colors[$idx_a[$i]];
785
	    $ca = array_reverse(array_slice($ca,0,$n));
786
	}
787
   	else {
788
	    $ca = $this->setslicecolors;
789
	}
790
 
791
 
792
	if( $this->posx <= 1 && $this->posx > 0 )
793
	    $xc = round($this->posx*$img->width);
794
	else
795
	    $xc = $this->posx ;
796
 
797
	if( $this->posy <= 1 && $this->posy > 0 )
798
	    $yc = round($this->posy*$img->height);
799
	else
800
	    $yc = $this->posy ;
801
 
802
	if( $this->radius <= 1 ) {
803
	    $width = floor($this->radius*min($img->width,$img->height));
804
	    // Make sure that the pie doesn't overflow the image border
805
	    // The 0.9 factor is simply an extra margin to leave some space
806
	    // between the pie an the border of the image.
807
	    $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
808
	}
809
	else {
810
	    $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
811
	}
812
 
813
	// Add a sanity check for width
814
	if( $width < 1 ) {
815
	    JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
816
	}
817
 
818
	// Establish a thickness. By default the thickness is a fifth of the
819
	// pie slice width (=pie radius) but since the perspective depends
820
	// on the inclination angle we use some heuristics to make the edge
821
	// slightly thicker the less the angle.
822
 
823
	// Has user specified an absolute thickness? In that case use
824
	// that instead
825
 
826
	if( $this->iThickness ) {
827
	  $thick = $this->iThickness;
828
	  $thick *= ($aaoption === 1 ? 2 : 1 );
829
	}
830
	else
831
	  $thick = $width/12;
832
	$a = $this->angle;
833
	if( $a <= 30 ) $thick *= 1.6;
834
	elseif( $a <= 40 ) $thick *= 1.4;
835
	elseif( $a <= 50 ) $thick *= 1.2;
836
	elseif( $a <= 60 ) $thick *= 1.0;
837
	elseif( $a <= 70 ) $thick *= 0.8;
838
	elseif( $a <= 80 ) $thick *= 0.7;
839
	else $thick *= 0.6;
840
 
841
	$thick = floor($thick);
842
 
843
	if( $this->explode_all )
844
	    for($i=0; $i < $n; ++$i)
845
		$this->explode_radius[$i]=$this->explode_r;
846
 
847
	$this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
848
	             $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
849
 
850
	// Adjust title position
851
	if( $aaoption != 1 ) {
852
	    $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin,			      "center","bottom");
853
	    $this->title->Stroke($img);
854
	}
855
    }
856
 
857
//---------------
858
// PRIVATE METHODS
859
 
860
    // Position the labels of each slice
861
    function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
862
	$this->value->halign="left";
863
	$this->value->valign="top";
864
 
865
	// Position the axis title.
866
	// dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
867
	// that intersects with the extension of the corresponding axis. The code looks a little
868
	// bit messy but this is really the only way of having a reasonable position of the
869
	// axis titles.
870
	$this->value->ApplyFont($img);
871
	$h=$img->GetTextHeight($label);
872
	// For numeric values the format of the display value
873
	// must be taken into account
874
	if( is_numeric($label) ) {
875
	    if( $label >= 0 )
876
		$w=$img->GetTextWidth(sprintf($this->value->format,$label));
877
	    else
878
		$w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
879
	}
880
	else
881
	    $w=$img->GetTextWidth($label);
882
	while( $a > 2*M_PI ) $a -= 2*M_PI;
883
	if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
884
	if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
885
	if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
886
	if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
887
 
888
	if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
889
	if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
890
	if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
891
	if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
892
	if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
893
 
894
	$x = round($xp-$dx*$w);
895
	$y = round($yp-$dy*$h);
896
 
897
 
898
        // Mark anchor point for debugging
899
	/*
900
	$img->SetColor('red');
901
	$img->Line($xp-10,$yp,$xp+10,$yp);
902
	$img->Line($xp,$yp-10,$xp,$yp+10);
903
	*/
904
	$oldmargin = $this->value->margin;
905
	$this->value->margin=0;
906
	$this->value->Stroke($img,$label,$x,$y);
907
	$this->value->margin=$oldmargin;
908
 
909
    }
910
} // Class
911
 
912
/* EOF */
913
?>