2150 |
mathias |
1 |
if(!dojo._hasResource["dojox._sql._crypto"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
|
|
|
2 |
dojo._hasResource["dojox._sql._crypto"] = true;
|
|
|
3 |
// Taken from http://www.movable-type.co.uk/scripts/aes.html by
|
|
|
4 |
// Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool
|
|
|
5 |
// by Brad Neuberg, bkn3@columbia.edu
|
|
|
6 |
|
|
|
7 |
dojo.provide("dojox._sql._crypto");
|
|
|
8 |
|
|
|
9 |
dojo.mixin(dojox._sql._crypto,{
|
|
|
10 |
// _POOL_SIZE:
|
|
|
11 |
// Size of worker pool to create to help with crypto
|
|
|
12 |
_POOL_SIZE: 100,
|
|
|
13 |
|
|
|
14 |
encrypt: function(plaintext, password, callback){
|
|
|
15 |
// summary:
|
|
|
16 |
// Use Corrected Block TEA to encrypt plaintext using password
|
|
|
17 |
// (note plaintext & password must be strings not string objects).
|
|
|
18 |
// Results will be returned to the 'callback' asychronously.
|
|
|
19 |
this._initWorkerPool();
|
|
|
20 |
|
|
|
21 |
var msg ={plaintext: plaintext, password: password};
|
|
|
22 |
msg = dojo.toJson(msg);
|
|
|
23 |
msg = "encr:" + String(msg);
|
|
|
24 |
|
|
|
25 |
this._assignWork(msg, callback);
|
|
|
26 |
},
|
|
|
27 |
|
|
|
28 |
decrypt: function(ciphertext, password, callback){
|
|
|
29 |
// summary:
|
|
|
30 |
// Use Corrected Block TEA to decrypt ciphertext using password
|
|
|
31 |
// (note ciphertext & password must be strings not string objects).
|
|
|
32 |
// Results will be returned to the 'callback' asychronously.
|
|
|
33 |
this._initWorkerPool();
|
|
|
34 |
|
|
|
35 |
var msg ={ciphertext: ciphertext, password: password};
|
|
|
36 |
msg = dojo.toJson(msg);
|
|
|
37 |
msg = "decr:" + String(msg);
|
|
|
38 |
|
|
|
39 |
this._assignWork(msg, callback);
|
|
|
40 |
},
|
|
|
41 |
|
|
|
42 |
_initWorkerPool: function(){
|
|
|
43 |
// bugs in Google Gears prevents us from dynamically creating
|
|
|
44 |
// and destroying workers as we need them -- the worker
|
|
|
45 |
// pool functionality stops working after a number of crypto
|
|
|
46 |
// cycles (probably related to a memory leak in Google Gears).
|
|
|
47 |
// this is too bad, since it results in much simpler code.
|
|
|
48 |
|
|
|
49 |
// instead, we have to create a pool of workers and reuse them. we
|
|
|
50 |
// keep a stack of 'unemployed' Worker IDs that are currently not working.
|
|
|
51 |
// if a work request comes in, we pop off the 'unemployed' stack
|
|
|
52 |
// and put them to work, storing them in an 'employed' hashtable,
|
|
|
53 |
// keyed by their Worker ID with the value being the callback function
|
|
|
54 |
// that wants the result. when an employed worker is done, we get
|
|
|
55 |
// a message in our 'manager' which adds this worker back to the
|
|
|
56 |
// unemployed stack and routes the result to the callback that
|
|
|
57 |
// wanted it. if all the workers were employed in the past but
|
|
|
58 |
// more work needed to be done (i.e. it's a tight labor pool ;)
|
|
|
59 |
// then the work messages are pushed onto
|
|
|
60 |
// a 'handleMessage' queue as an object tuple{msg: msg, callback: callback}
|
|
|
61 |
|
|
|
62 |
if(!this._manager){
|
|
|
63 |
try{
|
|
|
64 |
this._manager = google.gears.factory.create("beta.workerpool", "1.0");
|
|
|
65 |
this._unemployed = [];
|
|
|
66 |
this._employed ={};
|
|
|
67 |
this._handleMessage = [];
|
|
|
68 |
|
|
|
69 |
var self = this;
|
|
|
70 |
this._manager.onmessage = function(msg, sender){
|
|
|
71 |
// get the callback necessary to serve this result
|
|
|
72 |
var callback = self._employed["_" + sender];
|
|
|
73 |
|
|
|
74 |
// make this worker unemployed
|
|
|
75 |
self._employed["_" + sender] = undefined;
|
|
|
76 |
self._unemployed.push("_" + sender);
|
|
|
77 |
|
|
|
78 |
// see if we need to assign new work
|
|
|
79 |
// that was queued up needing to be done
|
|
|
80 |
if(self._handleMessage.length){
|
|
|
81 |
var handleMe = self._handleMessage.shift();
|
|
|
82 |
self._assignWork(handleMe.msg, handleMe.callback);
|
|
|
83 |
}
|
|
|
84 |
|
|
|
85 |
// return results
|
|
|
86 |
callback(msg);
|
|
|
87 |
}
|
|
|
88 |
|
|
|
89 |
var workerInit = "function _workerInit(){"
|
|
|
90 |
+ "gearsWorkerPool.onmessage = "
|
|
|
91 |
+ String(this._workerHandler)
|
|
|
92 |
+ ";"
|
|
|
93 |
+ "}";
|
|
|
94 |
|
|
|
95 |
var code = workerInit + " _workerInit();";
|
|
|
96 |
|
|
|
97 |
// create our worker pool
|
|
|
98 |
for(var i = 0; i < this._POOL_SIZE; i++){
|
|
|
99 |
this._unemployed.push("_" + this._manager.createWorker(code));
|
|
|
100 |
}
|
|
|
101 |
}catch(exp){
|
|
|
102 |
throw exp.message||exp;
|
|
|
103 |
}
|
|
|
104 |
}
|
|
|
105 |
},
|
|
|
106 |
|
|
|
107 |
_assignWork: function(msg, callback){
|
|
|
108 |
// can we immediately assign this work?
|
|
|
109 |
if(!this._handleMessage.length && this._unemployed.length){
|
|
|
110 |
// get an unemployed worker
|
|
|
111 |
var workerID = this._unemployed.shift().substring(1); // remove _
|
|
|
112 |
|
|
|
113 |
// list this worker as employed
|
|
|
114 |
this._employed["_" + workerID] = callback;
|
|
|
115 |
|
|
|
116 |
// do the worke
|
|
|
117 |
this._manager.sendMessage(msg, workerID);
|
|
|
118 |
}else{
|
|
|
119 |
// we have to queue it up
|
|
|
120 |
this._handleMessage ={msg: msg, callback: callback};
|
|
|
121 |
}
|
|
|
122 |
},
|
|
|
123 |
|
|
|
124 |
_workerHandler: function(msg, sender){
|
|
|
125 |
|
|
|
126 |
/* Begin AES Implementation */
|
|
|
127 |
|
|
|
128 |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
129 |
|
|
|
130 |
// Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1]
|
|
|
131 |
var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
|
|
|
132 |
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
|
|
|
133 |
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
|
|
|
134 |
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
|
|
|
135 |
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
|
|
|
136 |
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
|
|
|
137 |
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
|
|
|
138 |
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
|
|
|
139 |
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
|
|
|
140 |
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
|
|
|
141 |
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
|
|
|
142 |
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
|
|
|
143 |
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
|
|
|
144 |
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
|
|
|
145 |
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
|
|
|
146 |
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16];
|
|
|
147 |
|
|
|
148 |
// Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
|
|
|
149 |
var Rcon = [ [0x00, 0x00, 0x00, 0x00],
|
|
|
150 |
[0x01, 0x00, 0x00, 0x00],
|
|
|
151 |
[0x02, 0x00, 0x00, 0x00],
|
|
|
152 |
[0x04, 0x00, 0x00, 0x00],
|
|
|
153 |
[0x08, 0x00, 0x00, 0x00],
|
|
|
154 |
[0x10, 0x00, 0x00, 0x00],
|
|
|
155 |
[0x20, 0x00, 0x00, 0x00],
|
|
|
156 |
[0x40, 0x00, 0x00, 0x00],
|
|
|
157 |
[0x80, 0x00, 0x00, 0x00],
|
|
|
158 |
[0x1b, 0x00, 0x00, 0x00],
|
|
|
159 |
[0x36, 0x00, 0x00, 0x00] ];
|
|
|
160 |
|
|
|
161 |
/*
|
|
|
162 |
* AES Cipher function: encrypt 'input' with Rijndael algorithm
|
|
|
163 |
*
|
|
|
164 |
* takes byte-array 'input' (16 bytes)
|
|
|
165 |
* 2D byte-array key schedule 'w' (Nr+1 x Nb bytes)
|
|
|
166 |
*
|
|
|
167 |
* applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage
|
|
|
168 |
*
|
|
|
169 |
* returns byte-array encrypted value (16 bytes)
|
|
|
170 |
*/
|
|
|
171 |
function Cipher(input, w) { // main Cipher function [§5.1]
|
|
|
172 |
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
|
|
|
173 |
var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys
|
|
|
174 |
|
|
|
175 |
var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4]
|
|
|
176 |
for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i];
|
|
|
177 |
|
|
|
178 |
state = AddRoundKey(state, w, 0, Nb);
|
|
|
179 |
|
|
|
180 |
for (var round=1; round<Nr; round++) {
|
|
|
181 |
state = SubBytes(state, Nb);
|
|
|
182 |
state = ShiftRows(state, Nb);
|
|
|
183 |
state = MixColumns(state, Nb);
|
|
|
184 |
state = AddRoundKey(state, w, round, Nb);
|
|
|
185 |
}
|
|
|
186 |
|
|
|
187 |
state = SubBytes(state, Nb);
|
|
|
188 |
state = ShiftRows(state, Nb);
|
|
|
189 |
state = AddRoundKey(state, w, Nr, Nb);
|
|
|
190 |
|
|
|
191 |
var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4]
|
|
|
192 |
for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)];
|
|
|
193 |
return output;
|
|
|
194 |
}
|
|
|
195 |
|
|
|
196 |
|
|
|
197 |
function SubBytes(s, Nb) { // apply SBox to state S [§5.1.1]
|
|
|
198 |
for (var r=0; r<4; r++) {
|
|
|
199 |
for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]];
|
|
|
200 |
}
|
|
|
201 |
return s;
|
|
|
202 |
}
|
|
|
203 |
|
|
|
204 |
|
|
|
205 |
function ShiftRows(s, Nb) { // shift row r of state S left by r bytes [§5.1.2]
|
|
|
206 |
var t = new Array(4);
|
|
|
207 |
for (var r=1; r<4; r++) {
|
|
|
208 |
for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy
|
|
|
209 |
for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back
|
|
|
210 |
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
|
|
|
211 |
return s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
|
|
|
212 |
}
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
function MixColumns(s, Nb) { // combine bytes of each col of state S [§5.1.3]
|
|
|
216 |
for (var c=0; c<4; c++) {
|
|
|
217 |
var a = new Array(4); // 'a' is a copy of the current column from 's'
|
|
|
218 |
var b = new Array(4); // 'b' is a•{02} in GF(2^8)
|
|
|
219 |
for (var i=0; i<4; i++) {
|
|
|
220 |
a[i] = s[i][c];
|
|
|
221 |
b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1;
|
|
|
222 |
}
|
|
|
223 |
// a[n] ^ b[n] is a•{03} in GF(2^8)
|
|
|
224 |
s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3
|
|
|
225 |
s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3
|
|
|
226 |
s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3
|
|
|
227 |
s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3
|
|
|
228 |
}
|
|
|
229 |
return s;
|
|
|
230 |
}
|
|
|
231 |
|
|
|
232 |
|
|
|
233 |
function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4]
|
|
|
234 |
for (var r=0; r<4; r++) {
|
|
|
235 |
for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r];
|
|
|
236 |
}
|
|
|
237 |
return state;
|
|
|
238 |
}
|
|
|
239 |
|
|
|
240 |
|
|
|
241 |
function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2]
|
|
|
242 |
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
|
|
|
243 |
var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys
|
|
|
244 |
var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys
|
|
|
245 |
|
|
|
246 |
var w = new Array(Nb*(Nr+1));
|
|
|
247 |
var temp = new Array(4);
|
|
|
248 |
|
|
|
249 |
for (var i=0; i<Nk; i++) {
|
|
|
250 |
var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]];
|
|
|
251 |
w[i] = r;
|
|
|
252 |
}
|
|
|
253 |
|
|
|
254 |
for (var i=Nk; i<(Nb*(Nr+1)); i++) {
|
|
|
255 |
w[i] = new Array(4);
|
|
|
256 |
for (var t=0; t<4; t++) temp[t] = w[i-1][t];
|
|
|
257 |
if (i % Nk == 0) {
|
|
|
258 |
temp = SubWord(RotWord(temp));
|
|
|
259 |
for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t];
|
|
|
260 |
} else if (Nk > 6 && i%Nk == 4) {
|
|
|
261 |
temp = SubWord(temp);
|
|
|
262 |
}
|
|
|
263 |
for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t];
|
|
|
264 |
}
|
|
|
265 |
|
|
|
266 |
return w;
|
|
|
267 |
}
|
|
|
268 |
|
|
|
269 |
function SubWord(w) { // apply SBox to 4-byte word w
|
|
|
270 |
for (var i=0; i<4; i++) w[i] = Sbox[w[i]];
|
|
|
271 |
return w;
|
|
|
272 |
}
|
|
|
273 |
|
|
|
274 |
function RotWord(w) { // rotate 4-byte word w left by one byte
|
|
|
275 |
w[4] = w[0];
|
|
|
276 |
for (var i=0; i<4; i++) w[i] = w[i+1];
|
|
|
277 |
return w;
|
|
|
278 |
}
|
|
|
279 |
|
|
|
280 |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
281 |
|
|
|
282 |
/*
|
|
|
283 |
* Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation
|
|
|
284 |
* - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
|
|
|
285 |
* for each block
|
|
|
286 |
* - outputblock = cipher(counter, key)
|
|
|
287 |
* - cipherblock = plaintext xor outputblock
|
|
|
288 |
*/
|
|
|
289 |
function AESEncryptCtr(plaintext, password, nBits) {
|
|
|
290 |
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
|
|
|
291 |
|
|
|
292 |
// for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password;
|
|
|
293 |
// for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1
|
|
|
294 |
var nBytes = nBits/8; // no bytes in key
|
|
|
295 |
var pwBytes = new Array(nBytes);
|
|
|
296 |
for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;
|
|
|
297 |
|
|
|
298 |
var key = Cipher(pwBytes, KeyExpansion(pwBytes));
|
|
|
299 |
|
|
|
300 |
key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long
|
|
|
301 |
|
|
|
302 |
// initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes,
|
|
|
303 |
// block counter in 2nd 8 bytes
|
|
|
304 |
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
|
|
|
305 |
var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
|
|
|
306 |
var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970
|
|
|
307 |
|
|
|
308 |
// encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops
|
|
|
309 |
for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff;
|
|
|
310 |
for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff;
|
|
|
311 |
|
|
|
312 |
// generate key schedule - an expansion of the key into distinct Key Rounds for each round
|
|
|
313 |
var keySchedule = KeyExpansion(key);
|
|
|
314 |
|
|
|
315 |
var blockCount = Math.ceil(plaintext.length/blockSize);
|
|
|
316 |
var ciphertext = new Array(blockCount); // ciphertext as array of strings
|
|
|
317 |
|
|
|
318 |
for (var b=0; b<blockCount; b++) {
|
|
|
319 |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
|
|
|
320 |
// again done in two stages for 32-bit ops
|
|
|
321 |
for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff;
|
|
|
322 |
for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8)
|
|
|
323 |
|
|
|
324 |
var cipherCntr = Cipher(counterBlock, keySchedule); // -- encrypt counter block --
|
|
|
325 |
|
|
|
326 |
// calculate length of final block:
|
|
|
327 |
var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1;
|
|
|
328 |
|
|
|
329 |
var ct = '';
|
|
|
330 |
for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter byte-by-byte --
|
|
|
331 |
var plaintextByte = plaintext.charCodeAt(b*blockSize+i);
|
|
|
332 |
var cipherByte = plaintextByte ^ cipherCntr[i];
|
|
|
333 |
ct += String.fromCharCode(cipherByte);
|
|
|
334 |
}
|
|
|
335 |
// ct is now ciphertext for this block
|
|
|
336 |
|
|
|
337 |
ciphertext[b] = escCtrlChars(ct); // escape troublesome characters in ciphertext
|
|
|
338 |
}
|
|
|
339 |
|
|
|
340 |
// convert the nonce to a string to go on the front of the ciphertext
|
|
|
341 |
var ctrTxt = '';
|
|
|
342 |
for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]);
|
|
|
343 |
ctrTxt = escCtrlChars(ctrTxt);
|
|
|
344 |
|
|
|
345 |
// use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency
|
|
|
346 |
return ctrTxt + '-' + ciphertext.join('-');
|
|
|
347 |
}
|
|
|
348 |
|
|
|
349 |
|
|
|
350 |
/*
|
|
|
351 |
* Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation
|
|
|
352 |
*
|
|
|
353 |
* for each block
|
|
|
354 |
* - outputblock = cipher(counter, key)
|
|
|
355 |
* - cipherblock = plaintext xor outputblock
|
|
|
356 |
*/
|
|
|
357 |
function AESDecryptCtr(ciphertext, password, nBits) {
|
|
|
358 |
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
|
|
|
359 |
|
|
|
360 |
var nBytes = nBits/8; // no bytes in key
|
|
|
361 |
var pwBytes = new Array(nBytes);
|
|
|
362 |
for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff;
|
|
|
363 |
var pwKeySchedule = KeyExpansion(pwBytes);
|
|
|
364 |
var key = Cipher(pwBytes, pwKeySchedule);
|
|
|
365 |
key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long
|
|
|
366 |
|
|
|
367 |
var keySchedule = KeyExpansion(key);
|
|
|
368 |
|
|
|
369 |
ciphertext = ciphertext.split('-'); // split ciphertext into array of block-length strings
|
|
|
370 |
|
|
|
371 |
// recover nonce from 1st element of ciphertext
|
|
|
372 |
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
|
|
|
373 |
var counterBlock = new Array(blockSize);
|
|
|
374 |
var ctrTxt = unescCtrlChars(ciphertext[0]);
|
|
|
375 |
for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i);
|
|
|
376 |
|
|
|
377 |
var plaintext = new Array(ciphertext.length-1);
|
|
|
378 |
|
|
|
379 |
for (var b=1; b<ciphertext.length; b++) {
|
|
|
380 |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
|
|
|
381 |
for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff;
|
|
|
382 |
for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff;
|
|
|
383 |
|
|
|
384 |
var cipherCntr = Cipher(counterBlock, keySchedule); // encrypt counter block
|
|
|
385 |
|
|
|
386 |
ciphertext[b] = unescCtrlChars(ciphertext[b]);
|
|
|
387 |
|
|
|
388 |
var pt = '';
|
|
|
389 |
for (var i=0; i<ciphertext[b].length; i++) {
|
|
|
390 |
// -- xor plaintext with ciphered counter byte-by-byte --
|
|
|
391 |
var ciphertextByte = ciphertext[b].charCodeAt(i);
|
|
|
392 |
var plaintextByte = ciphertextByte ^ cipherCntr[i];
|
|
|
393 |
pt += String.fromCharCode(plaintextByte);
|
|
|
394 |
}
|
|
|
395 |
// pt is now plaintext for this block
|
|
|
396 |
|
|
|
397 |
plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext
|
|
|
398 |
}
|
|
|
399 |
|
|
|
400 |
return plaintext.join('');
|
|
|
401 |
}
|
|
|
402 |
|
|
|
403 |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
404 |
|
|
|
405 |
function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext
|
|
|
406 |
return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; });
|
|
|
407 |
} // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker
|
|
|
408 |
|
|
|
409 |
function unescCtrlChars(str) { // unescape potentially problematic control characters
|
|
|
410 |
return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); });
|
|
|
411 |
}
|
|
|
412 |
|
|
|
413 |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
414 |
|
|
|
415 |
function encrypt(plaintext, password){
|
|
|
416 |
return AESEncryptCtr(plaintext, password, 256);
|
|
|
417 |
}
|
|
|
418 |
|
|
|
419 |
function decrypt(ciphertext, password){
|
|
|
420 |
return AESDecryptCtr(ciphertext, password, 256);
|
|
|
421 |
}
|
|
|
422 |
|
|
|
423 |
/* End AES Implementation */
|
|
|
424 |
|
|
|
425 |
var cmd = msg.substr(0,4);
|
|
|
426 |
var arg = msg.substr(5);
|
|
|
427 |
if(cmd == "encr"){
|
|
|
428 |
arg = eval("(" + arg + ")");
|
|
|
429 |
var plaintext = arg.plaintext;
|
|
|
430 |
var password = arg.password;
|
|
|
431 |
var results = encrypt(plaintext, password);
|
|
|
432 |
gearsWorkerPool.sendMessage(String(results), sender);
|
|
|
433 |
}else if(cmd == "decr"){
|
|
|
434 |
arg = eval("(" + arg + ")");
|
|
|
435 |
var ciphertext = arg.ciphertext;
|
|
|
436 |
var password = arg.password;
|
|
|
437 |
var results = decrypt(ciphertext, password);
|
|
|
438 |
gearsWorkerPool.sendMessage(String(results), sender);
|
|
|
439 |
}
|
|
|
440 |
}
|
|
|
441 |
});
|
|
|
442 |
|
|
|
443 |
}
|