Rev 2388 | Blame | Compare with Previous | Last modification | View Log | RSS feed
<?php/*** PHPExcel** Copyright (c) 2006 - 2013 PHPExcel** This library is free software; you can redistribute it and/or* modify it under the terms of the GNU Lesser General Public* License as published by the Free Software Foundation; either* version 2.1 of the License, or (at your option) any later version.** This library is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU* Lesser General Public License for more details.** You should have received a copy of the GNU Lesser General Public* License along with this library; if not, write to the Free Software* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA** @category PHPExcel* @package PHPExcel_Calculation* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL* @version ##VERSION##, ##DATE##*//** PHPExcel root directory */if (!defined('PHPEXCEL_ROOT')) {/*** @ignore*/define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../');require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php');}require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php';/** LOG_GAMMA_X_MAX_VALUE */define('LOG_GAMMA_X_MAX_VALUE', 2.55e305);/** XMININ */define('XMININ', 2.23e-308);/** EPS */define('EPS', 2.22e-16);/** SQRT2PI */define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099);/*** PHPExcel_Calculation_Statistical** @category PHPExcel* @package PHPExcel_Calculation* @copyright Copyright (c) 2006 - 2013 PHPExcel (http://www.codeplex.com/PHPExcel)*/class PHPExcel_Calculation_Statistical {private static function _checkTrendArrays(&$array1,&$array2) {if (!is_array($array1)) { $array1 = array($array1); }if (!is_array($array2)) { $array2 = array($array2); }$array1 = PHPExcel_Calculation_Functions::flattenArray($array1);$array2 = PHPExcel_Calculation_Functions::flattenArray($array2);foreach($array1 as $key => $value) {if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {unset($array1[$key]);unset($array2[$key]);}}foreach($array2 as $key => $value) {if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {unset($array1[$key]);unset($array2[$key]);}}$array1 = array_merge($array1);$array2 = array_merge($array2);return True;} // function _checkTrendArrays()/*** Beta function.** @author Jaco van Kooten** @param p require p>0* @param q require q>0* @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow*/private static function _beta($p, $q) {if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) {return 0.0;} else {return exp(self::_logBeta($p, $q));}} // function _beta()/*** Incomplete beta function** @author Jaco van Kooten* @author Paul Meagher** The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).* @param x require 0<=x<=1* @param p require p>0* @param q require q>0* @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow*/private static function _incompleteBeta($x, $p, $q) {if ($x <= 0.0) {return 0.0;} elseif ($x >= 1.0) {return 1.0;} elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {return 0.0;}$beta_gam = exp((0 - self::_logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));if ($x < ($p + 1.0) / ($p + $q + 2.0)) {return $beta_gam * self::_betaFraction($x, $p, $q) / $p;} else {return 1.0 - ($beta_gam * self::_betaFraction(1 - $x, $q, $p) / $q);}} // function _incompleteBeta()// Function cache for _logBeta functionprivate static $_logBetaCache_p = 0.0;private static $_logBetaCache_q = 0.0;private static $_logBetaCache_result = 0.0;/*** The natural logarithm of the beta function.** @param p require p>0* @param q require q>0* @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow* @author Jaco van Kooten*/private static function _logBeta($p, $q) {if ($p != self::$_logBetaCache_p || $q != self::$_logBetaCache_q) {self::$_logBetaCache_p = $p;self::$_logBetaCache_q = $q;if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {self::$_logBetaCache_result = 0.0;} else {self::$_logBetaCache_result = self::_logGamma($p) + self::_logGamma($q) - self::_logGamma($p + $q);}}return self::$_logBetaCache_result;} // function _logBeta()/*** Evaluates of continued fraction part of incomplete beta function.* Based on an idea from Numerical Recipes (W.H. Press et al, 1992).* @author Jaco van Kooten*/private static function _betaFraction($x, $p, $q) {$c = 1.0;$sum_pq = $p + $q;$p_plus = $p + 1.0;$p_minus = $p - 1.0;$h = 1.0 - $sum_pq * $x / $p_plus;if (abs($h) < XMININ) {$h = XMININ;}$h = 1.0 / $h;$frac = $h;$m = 1;$delta = 0.0;while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION ) {$m2 = 2 * $m;// even index for d$d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2));$h = 1.0 + $d * $h;if (abs($h) < XMININ) {$h = XMININ;}$h = 1.0 / $h;$c = 1.0 + $d / $c;if (abs($c) < XMININ) {$c = XMININ;}$frac *= $h * $c;// odd index for d$d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));$h = 1.0 + $d * $h;if (abs($h) < XMININ) {$h = XMININ;}$h = 1.0 / $h;$c = 1.0 + $d / $c;if (abs($c) < XMININ) {$c = XMININ;}$delta = $h * $c;$frac *= $delta;++$m;}return $frac;} // function _betaFraction()/*** logGamma function** @version 1.1* @author Jaco van Kooten** Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.** The natural logarithm of the gamma function. <br />* Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />* Applied Mathematics Division <br />* Argonne National Laboratory <br />* Argonne, IL 60439 <br />* <p>* References:* <ol>* <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural* Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>* <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>* <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>* </ol>* </p>* <p>* From the original documentation:* </p>* <p>* This routine calculates the LOG(GAMMA) function for a positive real argument X.* Computation is based on an algorithm outlined in references 1 and 2.* The program uses rational functions that theoretically approximate LOG(GAMMA)* to at least 18 significant decimal digits. The approximation for X > 12 is from* reference 3, while approximations for X < 12.0 are similar to those in reference* 1, but are unpublished. The accuracy achieved depends on the arithmetic system,* the compiler, the intrinsic functions, and proper selection of the* machine-dependent constants.* </p>* <p>* Error returns: <br />* The program returns the value XINF for X .LE. 0.0 or when overflow would occur.* The computation is believed to be free of underflow and overflow.* </p>* @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305*/// Function cache for logGammaprivate static $_logGammaCache_result = 0.0;private static $_logGammaCache_x = 0.0;private static function _logGamma($x) {// Log Gamma related constantsstatic $lg_d1 = -0.5772156649015328605195174;static $lg_d2 = 0.4227843350984671393993777;static $lg_d4 = 1.791759469228055000094023;static $lg_p1 = array( 4.945235359296727046734888,201.8112620856775083915565,2290.838373831346393026739,11319.67205903380828685045,28557.24635671635335736389,38484.96228443793359990269,26377.48787624195437963534,7225.813979700288197698961 );static $lg_p2 = array( 4.974607845568932035012064,542.4138599891070494101986,15506.93864978364947665077,184793.2904445632425417223,1088204.76946882876749847,3338152.967987029735917223,5106661.678927352456275255,3074109.054850539556250927 );static $lg_p4 = array( 14745.02166059939948905062,2426813.369486704502836312,121475557.4045093227939592,2663432449.630976949898078,29403789566.34553899906876,170266573776.5398868392998,492612579337.743088758812,560625185622.3951465078242 );static $lg_q1 = array( 67.48212550303777196073036,1113.332393857199323513008,7738.757056935398733233834,27639.87074403340708898585,54993.10206226157329794414,61611.22180066002127833352,36351.27591501940507276287,8785.536302431013170870835 );static $lg_q2 = array( 183.0328399370592604055942,7765.049321445005871323047,133190.3827966074194402448,1136705.821321969608938755,5267964.117437946917577538,13467014.54311101692290052,17827365.30353274213975932,9533095.591844353613395747 );static $lg_q4 = array( 2690.530175870899333379843,639388.5654300092398984238,41355999.30241388052042842,1120872109.61614794137657,14886137286.78813811542398,101680358627.2438228077304,341747634550.7377132798597,446315818741.9713286462081 );static $lg_c = array( -0.001910444077728,8.4171387781295e-4,-5.952379913043012e-4,7.93650793500350248e-4,-0.002777777777777681622553,0.08333333333333333331554247,0.0057083835261 );// Rough estimate of the fourth root of logGamma_xBigstatic $lg_frtbig = 2.25e76;static $pnt68 = 0.6796875;if ($x == self::$_logGammaCache_x) {return self::$_logGammaCache_result;}$y = $x;if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) {if ($y <= EPS) {$res = -log(y);} elseif ($y <= 1.5) {// ---------------------// EPS .LT. X .LE. 1.5// ---------------------if ($y < $pnt68) {$corr = -log($y);$xm1 = $y;} else {$corr = 0.0;$xm1 = $y - 1.0;}if ($y <= 0.5 || $y >= $pnt68) {$xden = 1.0;$xnum = 0.0;for ($i = 0; $i < 8; ++$i) {$xnum = $xnum * $xm1 + $lg_p1[$i];$xden = $xden * $xm1 + $lg_q1[$i];}$res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));} else {$xm2 = $y - 1.0;$xden = 1.0;$xnum = 0.0;for ($i = 0; $i < 8; ++$i) {$xnum = $xnum * $xm2 + $lg_p2[$i];$xden = $xden * $xm2 + $lg_q2[$i];}$res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));}} elseif ($y <= 4.0) {// ---------------------// 1.5 .LT. X .LE. 4.0// ---------------------$xm2 = $y - 2.0;$xden = 1.0;$xnum = 0.0;for ($i = 0; $i < 8; ++$i) {$xnum = $xnum * $xm2 + $lg_p2[$i];$xden = $xden * $xm2 + $lg_q2[$i];}$res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));} elseif ($y <= 12.0) {// ----------------------// 4.0 .LT. X .LE. 12.0// ----------------------$xm4 = $y - 4.0;$xden = -1.0;$xnum = 0.0;for ($i = 0; $i < 8; ++$i) {$xnum = $xnum * $xm4 + $lg_p4[$i];$xden = $xden * $xm4 + $lg_q4[$i];}$res = $lg_d4 + $xm4 * ($xnum / $xden);} else {// ---------------------------------// Evaluate for argument .GE. 12.0// ---------------------------------$res = 0.0;if ($y <= $lg_frtbig) {$res = $lg_c[6];$ysq = $y * $y;for ($i = 0; $i < 6; ++$i)$res = $res / $ysq + $lg_c[$i];}$res /= $y;$corr = log($y);$res = $res + log(SQRT2PI) - 0.5 * $corr;$res += $y * ($corr - 1.0);}} else {// --------------------------// Return for bad arguments// --------------------------$res = MAX_VALUE;}// ------------------------------// Final adjustments and return// ------------------------------self::$_logGammaCache_x = $x;self::$_logGammaCache_result = $res;return $res;} // function _logGamma()//// Private implementation of the incomplete Gamma function//private static function _incompleteGamma($a,$x) {static $max = 32;$summer = 0;for ($n=0; $n<=$max; ++$n) {$divisor = $a;for ($i=1; $i<=$n; ++$i) {$divisor *= ($a + $i);}$summer += (pow($x,$n) / $divisor);}return pow($x,$a) * exp(0-$x) * $summer;} // function _incompleteGamma()//// Private implementation of the Gamma function//private static function _gamma($data) {if ($data == 0.0) return 0;static $p0 = 1.000000000190015;static $p = array ( 1 => 76.18009172947146,2 => -86.50532032941677,3 => 24.01409824083091,4 => -1.231739572450155,5 => 1.208650973866179e-3,6 => -5.395239384953e-6);$y = $x = $data;$tmp = $x + 5.5;$tmp -= ($x + 0.5) * log($tmp);$summer = $p0;for ($j=1;$j<=6;++$j) {$summer += ($p[$j] / ++$y);}return exp(0 - $tmp + log(SQRT2PI * $summer / $x));} // function _gamma()/**************************************************************************** inverse_ncdf.php* -------------------* begin : Friday, January 16, 2004* copyright : (C) 2004 Michael Nickerson* email : nickersonm@yahoo.com****************************************************************************/private static function _inverse_ncdf($p) {// Inverse ncdf approximation by Peter J. Acklam, implementation adapted to// PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as// a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html// I have not checked the accuracy of this implementation. Be aware that PHP// will truncate the coeficcients to 14 digits.// You have permission to use and distribute this function freely for// whatever purpose you want, but please show common courtesy and give credit// where credit is due.// Input paramater is $p - probability - where 0 < p < 1.// Coefficients in rational approximationsstatic $a = array( 1 => -3.969683028665376e+01,2 => 2.209460984245205e+02,3 => -2.759285104469687e+02,4 => 1.383577518672690e+02,5 => -3.066479806614716e+01,6 => 2.506628277459239e+00);static $b = array( 1 => -5.447609879822406e+01,2 => 1.615858368580409e+02,3 => -1.556989798598866e+02,4 => 6.680131188771972e+01,5 => -1.328068155288572e+01);static $c = array( 1 => -7.784894002430293e-03,2 => -3.223964580411365e-01,3 => -2.400758277161838e+00,4 => -2.549732539343734e+00,5 => 4.374664141464968e+00,6 => 2.938163982698783e+00);static $d = array( 1 => 7.784695709041462e-03,2 => 3.224671290700398e-01,3 => 2.445134137142996e+00,4 => 3.754408661907416e+00);// Define lower and upper region break-points.$p_low = 0.02425; //Use lower region approx. below this$p_high = 1 - $p_low; //Use upper region approx. above thisif (0 < $p && $p < $p_low) {// Rational approximation for lower region.$q = sqrt(-2 * log($p));return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /(((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);} elseif ($p_low <= $p && $p <= $p_high) {// Rational approximation for central region.$q = $p - 0.5;$r = $q * $q;return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);} elseif ($p_high < $p && $p < 1) {// Rational approximation for upper region.$q = sqrt(-2 * log(1 - $p));return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /(((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);}// If 0 < p < 1, return a null valuereturn PHPExcel_Calculation_Functions::NULL();} // function _inverse_ncdf()private static function _inverse_ncdf2($prob) {// Approximation of inverse standard normal CDF developed by// B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58.$a1 = 2.50662823884;$a2 = -18.61500062529;$a3 = 41.39119773534;$a4 = -25.44106049637;$b1 = -8.4735109309;$b2 = 23.08336743743;$b3 = -21.06224101826;$b4 = 3.13082909833;$c1 = 0.337475482272615;$c2 = 0.976169019091719;$c3 = 0.160797971491821;$c4 = 2.76438810333863E-02;$c5 = 3.8405729373609E-03;$c6 = 3.951896511919E-04;$c7 = 3.21767881768E-05;$c8 = 2.888167364E-07;$c9 = 3.960315187E-07;$y = $prob - 0.5;if (abs($y) < 0.42) {$z = ($y * $y);$z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1);} else {if ($y > 0) {$z = log(-log(1 - $prob));} else {$z = log(-log($prob));}$z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9)))))));if ($y < 0) {$z = -$z;}}return $z;} // function _inverse_ncdf2()private static function _inverse_ncdf3($p) {// ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3.// Produces the normal deviate Z corresponding to a given lower// tail area of P; Z is accurate to about 1 part in 10**16.//// This is a PHP version of the original FORTRAN code that can// be found at http://lib.stat.cmu.edu/apstat/$split1 = 0.425;$split2 = 5;$const1 = 0.180625;$const2 = 1.6;// coefficients for p close to 0.5$a0 = 3.3871328727963666080;$a1 = 1.3314166789178437745E+2;$a2 = 1.9715909503065514427E+3;$a3 = 1.3731693765509461125E+4;$a4 = 4.5921953931549871457E+4;$a5 = 6.7265770927008700853E+4;$a6 = 3.3430575583588128105E+4;$a7 = 2.5090809287301226727E+3;$b1 = 4.2313330701600911252E+1;$b2 = 6.8718700749205790830E+2;$b3 = 5.3941960214247511077E+3;$b4 = 2.1213794301586595867E+4;$b5 = 3.9307895800092710610E+4;$b6 = 2.8729085735721942674E+4;$b7 = 5.2264952788528545610E+3;// coefficients for p not close to 0, 0.5 or 1.$c0 = 1.42343711074968357734;$c1 = 4.63033784615654529590;$c2 = 5.76949722146069140550;$c3 = 3.64784832476320460504;$c4 = 1.27045825245236838258;$c5 = 2.41780725177450611770E-1;$c6 = 2.27238449892691845833E-2;$c7 = 7.74545014278341407640E-4;$d1 = 2.05319162663775882187;$d2 = 1.67638483018380384940;$d3 = 6.89767334985100004550E-1;$d4 = 1.48103976427480074590E-1;$d5 = 1.51986665636164571966E-2;$d6 = 5.47593808499534494600E-4;$d7 = 1.05075007164441684324E-9;// coefficients for p near 0 or 1.$e0 = 6.65790464350110377720;$e1 = 5.46378491116411436990;$e2 = 1.78482653991729133580;$e3 = 2.96560571828504891230E-1;$e4 = 2.65321895265761230930E-2;$e5 = 1.24266094738807843860E-3;$e6 = 2.71155556874348757815E-5;$e7 = 2.01033439929228813265E-7;$f1 = 5.99832206555887937690E-1;$f2 = 1.36929880922735805310E-1;$f3 = 1.48753612908506148525E-2;$f4 = 7.86869131145613259100E-4;$f5 = 1.84631831751005468180E-5;$f6 = 1.42151175831644588870E-7;$f7 = 2.04426310338993978564E-15;$q = $p - 0.5;// computation for p close to 0.5if (abs($q) <= split1) {$R = $const1 - $q * $q;$z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) /((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1);} else {if ($q < 0) {$R = $p;} else {$R = 1 - $p;}$R = pow(-log($R),2);// computation for p not close to 0, 0.5 or 1.If ($R <= $split2) {$R = $R - $const2;$z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) /((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1);} else {// computation for p near 0 or 1.$R = $R - $split2;$z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) /((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1);}if ($q < 0) {$z = -$z;}}return $z;} // function _inverse_ncdf3()/*** AVEDEV** Returns the average of the absolute deviations of data points from their mean.* AVEDEV is a measure of the variability in a data set.** Excel Function:* AVEDEV(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function AVEDEV() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());// Return value$returnValue = null;$aMean = self::AVERAGE($aArgs);if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {$aCount = 0;foreach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {$arg = (integer) $arg;}// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {if (is_null($returnValue)) {$returnValue = abs($arg - $aMean);} else {$returnValue += abs($arg - $aMean);}++$aCount;}}// Returnif ($aCount == 0) {return PHPExcel_Calculation_Functions::DIV0();}return $returnValue / $aCount;}return PHPExcel_Calculation_Functions::NaN();} // function AVEDEV()/*** AVERAGE** Returns the average (arithmetic mean) of the arguments** Excel Function:* AVERAGE(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function AVERAGE() {$returnValue = $aCount = 0;// Loop through argumentsforeach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {if ((is_bool($arg)) &&((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {$arg = (integer) $arg;}// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {if (is_null($returnValue)) {$returnValue = $arg;} else {$returnValue += $arg;}++$aCount;}}// Returnif ($aCount > 0) {return $returnValue / $aCount;} else {return PHPExcel_Calculation_Functions::DIV0();}} // function AVERAGE()/*** AVERAGEA** Returns the average of its arguments, including numbers, text, and logical values** Excel Function:* AVERAGEA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function AVERAGEA() {// Return value$returnValue = null;$aCount = 0;// Loop through argumentsforeach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {if ((is_bool($arg)) &&(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {} else {if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {if (is_bool($arg)) {$arg = (integer) $arg;} elseif (is_string($arg)) {$arg = 0;}if (is_null($returnValue)) {$returnValue = $arg;} else {$returnValue += $arg;}++$aCount;}}}// Returnif ($aCount > 0) {return $returnValue / $aCount;} else {return PHPExcel_Calculation_Functions::DIV0();}} // function AVERAGEA()/*** AVERAGEIF** Returns the average value from a range of cells that contain numbers within the list of arguments** Excel Function:* AVERAGEIF(value1[,value2[, ...]],condition)** @access public* @category Mathematical and Trigonometric Functions* @param mixed $arg,... Data values* @param string $condition The criteria that defines which cells will be checked.* @param mixed[] $averageArgs Data values* @return float*/public static function AVERAGEIF($aArgs,$condition,$averageArgs = array()) {// Return value$returnValue = 0;$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);$averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs);if (empty($averageArgs)) {$averageArgs = $aArgs;}$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);// Loop through arguments$aCount = 0;foreach ($aArgs as $key => $arg) {if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }$testCondition = '='.$arg.$condition;if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {if ((is_null($returnValue)) || ($arg > $returnValue)) {$returnValue += $arg;++$aCount;}}}// Returnif ($aCount > 0) {return $returnValue / $aCount;} else {return PHPExcel_Calculation_Functions::DIV0();}} // function AVERAGEIF()/*** BETADIST** Returns the beta distribution.** @param float $value Value at which you want to evaluate the distribution* @param float $alpha Parameter to the distribution* @param float $beta Parameter to the distribution* @param boolean $cumulative* @return float**/public static function BETADIST($value,$alpha,$beta,$rMin=0,$rMax=1) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);$rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);$rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {return PHPExcel_Calculation_Functions::NaN();}if ($rMin > $rMax) {$tmp = $rMin;$rMin = $rMax;$rMax = $tmp;}$value -= $rMin;$value /= ($rMax - $rMin);return self::_incompleteBeta($value,$alpha,$beta);}return PHPExcel_Calculation_Functions::VALUE();} // function BETADIST()/*** BETAINV** Returns the inverse of the beta distribution.** @param float $probability Probability at which you want to evaluate the distribution* @param float $alpha Parameter to the distribution* @param float $beta Parameter to the distribution* @param float $rMin Minimum value* @param float $rMax Maximum value* @param boolean $cumulative* @return float**/public static function BETAINV($probability,$alpha,$beta,$rMin=0,$rMax=1) {$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);$rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);$rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {return PHPExcel_Calculation_Functions::NaN();}if ($rMin > $rMax) {$tmp = $rMin;$rMin = $rMax;$rMax = $tmp;}$a = 0;$b = 2;$i = 0;while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) {$guess = ($a + $b) / 2;$result = self::BETADIST($guess, $alpha, $beta);if (($result == $probability) || ($result == 0)) {$b = $a;} elseif ($result > $probability) {$b = $guess;} else {$a = $guess;}}if ($i == MAX_ITERATIONS) {return PHPExcel_Calculation_Functions::NA();}return round($rMin + $guess * ($rMax - $rMin),12);}return PHPExcel_Calculation_Functions::VALUE();} // function BETAINV()/*** BINOMDIST** Returns the individual term binomial distribution probability. Use BINOMDIST in problems with* a fixed number of tests or trials, when the outcomes of any trial are only success or failure,* when trials are independent, and when the probability of success is constant throughout the* experiment. For example, BINOMDIST can calculate the probability that two of the next three* babies born are male.** @param float $value Number of successes in trials* @param float $trials Number of trials* @param float $probability Probability of success on each trial* @param boolean $cumulative* @return float** @todo Cumulative distribution function**/public static function BINOMDIST($value, $trials, $probability, $cumulative) {$value = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value));$trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {if (($value < 0) || ($value > $trials)) {return PHPExcel_Calculation_Functions::NaN();}if (($probability < 0) || ($probability > 1)) {return PHPExcel_Calculation_Functions::NaN();}if ((is_numeric($cumulative)) || (is_bool($cumulative))) {if ($cumulative) {$summer = 0;for ($i = 0; $i <= $value; ++$i) {$summer += PHPExcel_Calculation_MathTrig::COMBIN($trials,$i) * pow($probability,$i) * pow(1 - $probability,$trials - $i);}return $summer;} else {return PHPExcel_Calculation_MathTrig::COMBIN($trials,$value) * pow($probability,$value) * pow(1 - $probability,$trials - $value) ;}}}return PHPExcel_Calculation_Functions::VALUE();} // function BINOMDIST()/*** CHIDIST** Returns the one-tailed probability of the chi-squared distribution.** @param float $value Value for the function* @param float $degrees degrees of freedom* @return float*/public static function CHIDIST($value, $degrees) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));if ((is_numeric($value)) && (is_numeric($degrees))) {if ($degrees < 1) {return PHPExcel_Calculation_Functions::NaN();}if ($value < 0) {if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {return 1;}return PHPExcel_Calculation_Functions::NaN();}return 1 - (self::_incompleteGamma($degrees/2,$value/2) / self::_gamma($degrees/2));}return PHPExcel_Calculation_Functions::VALUE();} // function CHIDIST()/*** CHIINV** Returns the one-tailed probability of the chi-squared distribution.** @param float $probability Probability for the function* @param float $degrees degrees of freedom* @return float*/public static function CHIINV($probability, $degrees) {$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));if ((is_numeric($probability)) && (is_numeric($degrees))) {$xLo = 100;$xHi = 0;$x = $xNew = 1;$dx = 1;$i = 0;while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {// Apply Newton-Raphson step$result = self::CHIDIST($x, $degrees);$error = $result - $probability;if ($error == 0.0) {$dx = 0;} elseif ($error < 0.0) {$xLo = $x;} else {$xHi = $x;}// Avoid division by zeroif ($result != 0.0) {$dx = $error / $result;$xNew = $x - $dx;}// If the NR fails to converge (which for example may be the// case if the initial guess is too rough) we apply a bisection// step to determine a more narrow interval around the root.if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {$xNew = ($xLo + $xHi) / 2;$dx = $xNew - $x;}$x = $xNew;}if ($i == MAX_ITERATIONS) {return PHPExcel_Calculation_Functions::NA();}return round($x,12);}return PHPExcel_Calculation_Functions::VALUE();} // function CHIINV()/*** CONFIDENCE** Returns the confidence interval for a population mean** @param float $alpha* @param float $stdDev Standard Deviation* @param float $size* @return float**/public static function CONFIDENCE($alpha,$stdDev,$size) {$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);$size = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size));if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {if (($alpha <= 0) || ($alpha >= 1)) {return PHPExcel_Calculation_Functions::NaN();}if (($stdDev <= 0) || ($size < 1)) {return PHPExcel_Calculation_Functions::NaN();}return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);}return PHPExcel_Calculation_Functions::VALUE();} // function CONFIDENCE()/*** CORREL** Returns covariance, the average of the products of deviations for each data point pair.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @return float*/public static function CORREL($yValues,$xValues=null) {if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) {return PHPExcel_Calculation_Functions::VALUE();}if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return PHPExcel_Calculation_Functions::DIV0();}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);return $bestFitLinear->getCorrelation();} // function CORREL()/*** COUNT** Counts the number of cells that contain numbers within the list of arguments** Excel Function:* COUNT(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return int*/public static function COUNT() {// Return value$returnValue = 0;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());foreach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {$arg = (integer) $arg;}// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {++$returnValue;}}// Returnreturn $returnValue;} // function COUNT()/*** COUNTA** Counts the number of cells that are not empty within the list of arguments** Excel Function:* COUNTA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return int*/public static function COUNTA() {// Return value$returnValue = 0;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());foreach ($aArgs as $arg) {// Is it a numeric, boolean or string value?if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {++$returnValue;}}// Returnreturn $returnValue;} // function COUNTA()/*** COUNTBLANK** Counts the number of empty cells within the list of arguments** Excel Function:* COUNTBLANK(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return int*/public static function COUNTBLANK() {// Return value$returnValue = 0;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());foreach ($aArgs as $arg) {// Is it a blank cell?if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) {++$returnValue;}}// Returnreturn $returnValue;} // function COUNTBLANK()/*** COUNTIF** Counts the number of cells that contain numbers within the list of arguments** Excel Function:* COUNTIF(value1[,value2[, ...]],condition)** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @param string $condition The criteria that defines which cells will be counted.* @return int*/public static function COUNTIF($aArgs,$condition) {// Return value$returnValue = 0;$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);// Loop through argumentsforeach ($aArgs as $arg) {if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }$testCondition = '='.$arg.$condition;if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {// Is it a value within our criteria++$returnValue;}}// Returnreturn $returnValue;} // function COUNTIF()/*** COVAR** Returns covariance, the average of the products of deviations for each data point pair.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @return float*/public static function COVAR($yValues,$xValues) {if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return PHPExcel_Calculation_Functions::DIV0();}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);return $bestFitLinear->getCovariance();} // function COVAR()/*** CRITBINOM** Returns the smallest value for which the cumulative binomial distribution is greater* than or equal to a criterion value** See http://support.microsoft.com/kb/828117/ for details of the algorithm used** @param float $trials number of Bernoulli trials* @param float $probability probability of a success on each trial* @param float $alpha criterion value* @return int** @todo Warning. This implementation differs from the algorithm detailed on the MS* web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess* This eliminates a potential endless loop error, but may have an adverse affect on the* accuracy of the function (although all my tests have so far returned correct results).**/public static function CRITBINOM($trials, $probability, $alpha) {$trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {if ($trials < 0) {return PHPExcel_Calculation_Functions::NaN();}if (($probability < 0) || ($probability > 1)) {return PHPExcel_Calculation_Functions::NaN();}if (($alpha < 0) || ($alpha > 1)) {return PHPExcel_Calculation_Functions::NaN();}if ($alpha <= 0.5) {$t = sqrt(log(1 / ($alpha * $alpha)));$trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));} else {$t = sqrt(log(1 / pow(1 - $alpha,2)));$trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);}$Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));if ($Guess < 0) {$Guess = 0;} elseif ($Guess > $trials) {$Guess = $trials;}$TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;$EssentiallyZero = 10e-12;$m = floor($trials * $probability);++$TotalUnscaledProbability;if ($m == $Guess) { ++$UnscaledPGuess; }if ($m <= $Guess) { ++$UnscaledCumPGuess; }$PreviousValue = 1;$Done = False;$k = $m + 1;while ((!$Done) && ($k <= $trials)) {$CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));$TotalUnscaledProbability += $CurrentValue;if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; }if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; }if ($CurrentValue <= $EssentiallyZero) { $Done = True; }$PreviousValue = $CurrentValue;++$k;}$PreviousValue = 1;$Done = False;$k = $m - 1;while ((!$Done) && ($k >= 0)) {$CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);$TotalUnscaledProbability += $CurrentValue;if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; }if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; }if ($CurrentValue <= $EssentiallyZero) { $Done = True; }$PreviousValue = $CurrentValue;--$k;}$PGuess = $UnscaledPGuess / $TotalUnscaledProbability;$CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;// $CumPGuessMinus1 = $CumPGuess - $PGuess;$CumPGuessMinus1 = $CumPGuess - 1;while (True) {if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {return $Guess;} elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {$PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);$CumPGuessMinus1 = $CumPGuess;$CumPGuess = $CumPGuess + $PGuessPlus1;$PGuess = $PGuessPlus1;++$Guess;} elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {$PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;$CumPGuess = $CumPGuessMinus1;$CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;$PGuess = $PGuessMinus1;--$Guess;}}}return PHPExcel_Calculation_Functions::VALUE();} // function CRITBINOM()/*** DEVSQ** Returns the sum of squares of deviations of data points from their sample mean.** Excel Function:* DEVSQ(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function DEVSQ() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());// Return value$returnValue = null;$aMean = self::AVERAGE($aArgs);if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {$aCount = -1;foreach ($aArgs as $k => $arg) {// Is it a numeric value?if ((is_bool($arg)) &&((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {$arg = (integer) $arg;}if ((is_numeric($arg)) && (!is_string($arg))) {if (is_null($returnValue)) {$returnValue = pow(($arg - $aMean),2);} else {$returnValue += pow(($arg - $aMean),2);}++$aCount;}}// Returnif (is_null($returnValue)) {return PHPExcel_Calculation_Functions::NaN();} else {return $returnValue;}}return self::NA();} // function DEVSQ()/*** EXPONDIST** Returns the exponential distribution. Use EXPONDIST to model the time between events,* such as how long an automated bank teller takes to deliver cash. For example, you can* use EXPONDIST to determine the probability that the process takes at most 1 minute.** @param float $value Value of the function* @param float $lambda The parameter value* @param boolean $cumulative* @return float*/public static function EXPONDIST($value, $lambda, $cumulative) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$lambda = PHPExcel_Calculation_Functions::flattenSingleValue($lambda);$cumulative = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative);if ((is_numeric($value)) && (is_numeric($lambda))) {if (($value < 0) || ($lambda < 0)) {return PHPExcel_Calculation_Functions::NaN();}if ((is_numeric($cumulative)) || (is_bool($cumulative))) {if ($cumulative) {return 1 - exp(0-$value*$lambda);} else {return $lambda * exp(0-$value*$lambda);}}}return PHPExcel_Calculation_Functions::VALUE();} // function EXPONDIST()/*** FISHER** Returns the Fisher transformation at x. This transformation produces a function that* is normally distributed rather than skewed. Use this function to perform hypothesis* testing on the correlation coefficient.** @param float $value* @return float*/public static function FISHER($value) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);if (is_numeric($value)) {if (($value <= -1) || ($value >= 1)) {return PHPExcel_Calculation_Functions::NaN();}return 0.5 * log((1+$value)/(1-$value));}return PHPExcel_Calculation_Functions::VALUE();} // function FISHER()/*** FISHERINV** Returns the inverse of the Fisher transformation. Use this transformation when* analyzing correlations between ranges or arrays of data. If y = FISHER(x), then* FISHERINV(y) = x.** @param float $value* @return float*/public static function FISHERINV($value) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);if (is_numeric($value)) {return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);}return PHPExcel_Calculation_Functions::VALUE();} // function FISHERINV()/*** FORECAST** Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.** @param float Value of X for which we want to find Y* @param array of mixed Data Series Y* @param array of mixed Data Series X* @return float*/public static function FORECAST($xValue,$yValues,$xValues) {$xValue = PHPExcel_Calculation_Functions::flattenSingleValue($xValue);if (!is_numeric($xValue)) {return PHPExcel_Calculation_Functions::VALUE();}if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return PHPExcel_Calculation_Functions::DIV0();}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);return $bestFitLinear->getValueOfYForX($xValue);} // function FORECAST()/*** GAMMADIST** Returns the gamma distribution.** @param float $value Value at which you want to evaluate the distribution* @param float $a Parameter to the distribution* @param float $b Parameter to the distribution* @param boolean $cumulative* @return float**/public static function GAMMADIST($value,$a,$b,$cumulative) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$a = PHPExcel_Calculation_Functions::flattenSingleValue($a);$b = PHPExcel_Calculation_Functions::flattenSingleValue($b);if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {if (($value < 0) || ($a <= 0) || ($b <= 0)) {return PHPExcel_Calculation_Functions::NaN();}if ((is_numeric($cumulative)) || (is_bool($cumulative))) {if ($cumulative) {return self::_incompleteGamma($a,$value / $b) / self::_gamma($a);} else {return (1 / (pow($b,$a) * self::_gamma($a))) * pow($value,$a-1) * exp(0-($value / $b));}}}return PHPExcel_Calculation_Functions::VALUE();} // function GAMMADIST()/*** GAMMAINV** Returns the inverse of the beta distribution.** @param float $probability Probability at which you want to evaluate the distribution* @param float $alpha Parameter to the distribution* @param float $beta Parameter to the distribution* @return float**/public static function GAMMAINV($probability,$alpha,$beta) {$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {return PHPExcel_Calculation_Functions::NaN();}$xLo = 0;$xHi = $alpha * $beta * 5;$x = $xNew = 1;$error = $pdf = 0;$dx = 1024;$i = 0;while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {// Apply Newton-Raphson step$error = self::GAMMADIST($x, $alpha, $beta, True) - $probability;if ($error < 0.0) {$xLo = $x;} else {$xHi = $x;}$pdf = self::GAMMADIST($x, $alpha, $beta, False);// Avoid division by zeroif ($pdf != 0.0) {$dx = $error / $pdf;$xNew = $x - $dx;}// If the NR fails to converge (which for example may be the// case if the initial guess is too rough) we apply a bisection// step to determine a more narrow interval around the root.if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {$xNew = ($xLo + $xHi) / 2;$dx = $xNew - $x;}$x = $xNew;}if ($i == MAX_ITERATIONS) {return PHPExcel_Calculation_Functions::NA();}return $x;}return PHPExcel_Calculation_Functions::VALUE();} // function GAMMAINV()/*** GAMMALN** Returns the natural logarithm of the gamma function.** @param float $value* @return float*/public static function GAMMALN($value) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);if (is_numeric($value)) {if ($value <= 0) {return PHPExcel_Calculation_Functions::NaN();}return log(self::_gamma($value));}return PHPExcel_Calculation_Functions::VALUE();} // function GAMMALN()/*** GEOMEAN** Returns the geometric mean of an array or range of positive data. For example, you* can use GEOMEAN to calculate average growth rate given compound interest with* variable rates.** Excel Function:* GEOMEAN(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function GEOMEAN() {$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());$aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs);if (is_numeric($aMean) && ($aMean > 0)) {$aCount = self::COUNT($aArgs) ;if (self::MIN($aArgs) > 0) {return pow($aMean, (1 / $aCount));}}return PHPExcel_Calculation_Functions::NaN();} // GEOMEAN()/*** GROWTH** Returns values along a predicted emponential trend** @param array of mixed Data Series Y* @param array of mixed Data Series X* @param array of mixed Values of X for which we want to find Y* @param boolean A logical value specifying whether to force the intersect to equal 0.* @return array of float*/public static function GROWTH($yValues,$xValues=array(),$newValues=array(),$const=True) {$yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);$xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);$newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);$const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);$bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const);if (empty($newValues)) {$newValues = $bestFitExponential->getXValues();}$returnArray = array();foreach($newValues as $xValue) {$returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);}return $returnArray;} // function GROWTH()/*** HARMEAN** Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the* arithmetic mean of reciprocals.** Excel Function:* HARMEAN(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function HARMEAN() {// Return value$returnValue = PHPExcel_Calculation_Functions::NA();// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());if (self::MIN($aArgs) < 0) {return PHPExcel_Calculation_Functions::NaN();}$aCount = 0;foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {if ($arg <= 0) {return PHPExcel_Calculation_Functions::NaN();}if (is_null($returnValue)) {$returnValue = (1 / $arg);} else {$returnValue += (1 / $arg);}++$aCount;}}// Returnif ($aCount > 0) {return 1 / ($returnValue / $aCount);} else {return $returnValue;}} // function HARMEAN()/*** HYPGEOMDIST** Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of* sample successes, given the sample size, population successes, and population size.** @param float $sampleSuccesses Number of successes in the sample* @param float $sampleNumber Size of the sample* @param float $populationSuccesses Number of successes in the population* @param float $populationNumber Population size* @return float**/public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber) {$sampleSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses));$sampleNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber));$populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses));$populationNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber));if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {return PHPExcel_Calculation_Functions::NaN();}if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {return PHPExcel_Calculation_Functions::NaN();}if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {return PHPExcel_Calculation_Functions::NaN();}return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses,$sampleSuccesses) *PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses,$sampleNumber - $sampleSuccesses) /PHPExcel_Calculation_MathTrig::COMBIN($populationNumber,$sampleNumber);}return PHPExcel_Calculation_Functions::VALUE();} // function HYPGEOMDIST()/*** INTERCEPT** Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @return float*/public static function INTERCEPT($yValues,$xValues) {if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return PHPExcel_Calculation_Functions::DIV0();}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);return $bestFitLinear->getIntersect();} // function INTERCEPT()/*** KURT** Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness* or flatness of a distribution compared with the normal distribution. Positive* kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a* relatively flat distribution.** @param array Data Series* @return float*/public static function KURT() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());$mean = self::AVERAGE($aArgs);$stdDev = self::STDEV($aArgs);if ($stdDev > 0) {$count = $summer = 0;// Loop through argumentsforeach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {} else {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$summer += pow((($arg - $mean) / $stdDev),4) ;++$count;}}}// Returnif ($count > 3) {return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1,2) / (($count-2) * ($count-3)));}}return PHPExcel_Calculation_Functions::DIV0();} // function KURT()/*** LARGE** Returns the nth largest value in a data set. You can use this function to* select a value based on its relative standing.** Excel Function:* LARGE(value1[,value2[, ...]],entry)** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @param int $entry Position (ordered from the largest) in the array or range of data to return* @return float**/public static function LARGE() {$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());// Calculate$entry = floor(array_pop($aArgs));if ((is_numeric($entry)) && (!is_string($entry))) {$mArgs = array();foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$mArgs[] = $arg;}}$count = self::COUNT($mArgs);$entry = floor(--$entry);if (($entry < 0) || ($entry >= $count) || ($count == 0)) {return PHPExcel_Calculation_Functions::NaN();}rsort($mArgs);return $mArgs[$entry];}return PHPExcel_Calculation_Functions::VALUE();} // function LARGE()/*** LINEST** Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,* and then returns an array that describes the line.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @param boolean A logical value specifying whether to force the intersect to equal 0.* @param boolean A logical value specifying whether to return additional regression statistics.* @return array*/public static function LINEST($yValues, $xValues = NULL, $const = TRUE, $stats = FALSE) {$const = (is_null($const)) ? TRUE : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);$stats = (is_null($stats)) ? FALSE : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues)));if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return 0;}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const);if ($stats) {return array( array( $bestFitLinear->getSlope(),$bestFitLinear->getSlopeSE(),$bestFitLinear->getGoodnessOfFit(),$bestFitLinear->getF(),$bestFitLinear->getSSRegression(),),array( $bestFitLinear->getIntersect(),$bestFitLinear->getIntersectSE(),$bestFitLinear->getStdevOfResiduals(),$bestFitLinear->getDFResiduals(),$bestFitLinear->getSSResiduals()));} else {return array( $bestFitLinear->getSlope(),$bestFitLinear->getIntersect());}} // function LINEST()/*** LOGEST** Calculates an exponential curve that best fits the X and Y data series,* and then returns an array that describes the line.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @param boolean A logical value specifying whether to force the intersect to equal 0.* @param boolean A logical value specifying whether to return additional regression statistics.* @return array*/public static function LOGEST($yValues,$xValues=null,$const=True,$stats=False) {$const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);$stats = (is_null($stats)) ? False : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues)));if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);foreach($yValues as $value) {if ($value <= 0.0) {return PHPExcel_Calculation_Functions::NaN();}}if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return 1;}$bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const);if ($stats) {return array( array( $bestFitExponential->getSlope(),$bestFitExponential->getSlopeSE(),$bestFitExponential->getGoodnessOfFit(),$bestFitExponential->getF(),$bestFitExponential->getSSRegression(),),array( $bestFitExponential->getIntersect(),$bestFitExponential->getIntersectSE(),$bestFitExponential->getStdevOfResiduals(),$bestFitExponential->getDFResiduals(),$bestFitExponential->getSSResiduals()));} else {return array( $bestFitExponential->getSlope(),$bestFitExponential->getIntersect());}} // function LOGEST()/*** LOGINV** Returns the inverse of the normal cumulative distribution** @param float $probability* @param float $mean* @param float $stdDev* @return float** @todo Try implementing P J Acklam's refinement algorithm for greater* accuracy if I can get my head round the mathematics* (as described at) http://home.online.no/~pjacklam/notes/invnorm/*/public static function LOGINV($probability, $mean, $stdDev) {$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {return PHPExcel_Calculation_Functions::NaN();}return exp($mean + $stdDev * self::NORMSINV($probability));}return PHPExcel_Calculation_Functions::VALUE();} // function LOGINV()/*** LOGNORMDIST** Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed* with parameters mean and standard_dev.** @param float $value* @param float $mean* @param float $stdDev* @return float*/public static function LOGNORMDIST($value, $mean, $stdDev) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {if (($value <= 0) || ($stdDev <= 0)) {return PHPExcel_Calculation_Functions::NaN();}return self::NORMSDIST((log($value) - $mean) / $stdDev);}return PHPExcel_Calculation_Functions::VALUE();} // function LOGNORMDIST()/*** MAX** MAX returns the value of the element of the values passed that has the highest value,* with negative numbers considered smaller than positive numbers.** Excel Function:* MAX(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function MAX() {// Return value$returnValue = null;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {if ((is_null($returnValue)) || ($arg > $returnValue)) {$returnValue = $arg;}}}// Returnif(is_null($returnValue)) {return 0;}return $returnValue;} // function MAX()/*** MAXA** Returns the greatest value in a list of arguments, including numbers, text, and logical values** Excel Function:* MAXA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function MAXA() {// Return value$returnValue = null;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {if (is_bool($arg)) {$arg = (integer) $arg;} elseif (is_string($arg)) {$arg = 0;}if ((is_null($returnValue)) || ($arg > $returnValue)) {$returnValue = $arg;}}}// Returnif(is_null($returnValue)) {return 0;}return $returnValue;} // function MAXA()/*** MAXIF** Counts the maximum value within a range of cells that contain numbers within the list of arguments** Excel Function:* MAXIF(value1[,value2[, ...]],condition)** @access public* @category Mathematical and Trigonometric Functions* @param mixed $arg,... Data values* @param string $condition The criteria that defines which cells will be checked.* @return float*/public static function MAXIF($aArgs,$condition,$sumArgs = array()) {// Return value$returnValue = null;$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);$sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);if (empty($sumArgs)) {$sumArgs = $aArgs;}$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);// Loop through argumentsforeach ($aArgs as $key => $arg) {if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }$testCondition = '='.$arg.$condition;if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {if ((is_null($returnValue)) || ($arg > $returnValue)) {$returnValue = $arg;}}}// Returnreturn $returnValue;} // function MAXIF()/*** MEDIAN** Returns the median of the given numbers. The median is the number in the middle of a set of numbers.** Excel Function:* MEDIAN(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function MEDIAN() {// Return value$returnValue = PHPExcel_Calculation_Functions::NaN();$mArgs = array();// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$mArgs[] = $arg;}}$mValueCount = count($mArgs);if ($mValueCount > 0) {sort($mArgs,SORT_NUMERIC);$mValueCount = $mValueCount / 2;if ($mValueCount == floor($mValueCount)) {$returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;} else {$mValueCount == floor($mValueCount);$returnValue = $mArgs[$mValueCount];}}// Returnreturn $returnValue;} // function MEDIAN()/*** MIN** MIN returns the value of the element of the values passed that has the smallest value,* with negative numbers considered smaller than positive numbers.** Excel Function:* MIN(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function MIN() {// Return value$returnValue = null;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {if ((is_null($returnValue)) || ($arg < $returnValue)) {$returnValue = $arg;}}}// Returnif(is_null($returnValue)) {return 0;}return $returnValue;} // function MIN()/*** MINA** Returns the smallest value in a list of arguments, including numbers, text, and logical values** Excel Function:* MINA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function MINA() {// Return value$returnValue = null;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {if (is_bool($arg)) {$arg = (integer) $arg;} elseif (is_string($arg)) {$arg = 0;}if ((is_null($returnValue)) || ($arg < $returnValue)) {$returnValue = $arg;}}}// Returnif(is_null($returnValue)) {return 0;}return $returnValue;} // function MINA()/*** MINIF** Returns the minimum value within a range of cells that contain numbers within the list of arguments** Excel Function:* MINIF(value1[,value2[, ...]],condition)** @access public* @category Mathematical and Trigonometric Functions* @param mixed $arg,... Data values* @param string $condition The criteria that defines which cells will be checked.* @return float*/public static function MINIF($aArgs,$condition,$sumArgs = array()) {// Return value$returnValue = null;$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);$sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);if (empty($sumArgs)) {$sumArgs = $aArgs;}$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);// Loop through argumentsforeach ($aArgs as $key => $arg) {if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }$testCondition = '='.$arg.$condition;if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {if ((is_null($returnValue)) || ($arg < $returnValue)) {$returnValue = $arg;}}}// Returnreturn $returnValue;} // function MINIF()//// Special variant of array_count_values that isn't limited to strings and integers,// but can work with floating point numbers as values//private static function _modeCalc($data) {$frequencyArray = array();foreach($data as $datum) {$found = False;foreach($frequencyArray as $key => $value) {if ((string) $value['value'] == (string) $datum) {++$frequencyArray[$key]['frequency'];$found = True;break;}}if (!$found) {$frequencyArray[] = array('value' => $datum,'frequency' => 1 );}}foreach($frequencyArray as $key => $value) {$frequencyList[$key] = $value['frequency'];$valueList[$key] = $value['value'];}array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);if ($frequencyArray[0]['frequency'] == 1) {return PHPExcel_Calculation_Functions::NA();}return $frequencyArray[0]['value'];} // function _modeCalc()/*** MODE** Returns the most frequently occurring, or repetitive, value in an array or range of data** Excel Function:* MODE(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function MODE() {// Return value$returnValue = PHPExcel_Calculation_Functions::NA();// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());$mArgs = array();foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$mArgs[] = $arg;}}if (!empty($mArgs)) {return self::_modeCalc($mArgs);}// Returnreturn $returnValue;} // function MODE()/*** NEGBINOMDIST** Returns the negative binomial distribution. NEGBINOMDIST returns the probability that* there will be number_f failures before the number_s-th success, when the constant* probability of a success is probability_s. This function is similar to the binomial* distribution, except that the number of successes is fixed, and the number of trials is* variable. Like the binomial, trials are assumed to be independent.** @param float $failures Number of Failures* @param float $successes Threshold number of Successes* @param float $probability Probability of success on each trial* @return float**/public static function NEGBINOMDIST($failures, $successes, $probability) {$failures = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures));$successes = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes));$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {if (($failures < 0) || ($successes < 1)) {return PHPExcel_Calculation_Functions::NaN();}if (($probability < 0) || ($probability > 1)) {return PHPExcel_Calculation_Functions::NaN();}if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {if (($failures + $successes - 1) <= 0) {return PHPExcel_Calculation_Functions::NaN();}}return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1,$successes - 1)) * (pow($probability,$successes)) * (pow(1 - $probability,$failures)) ;}return PHPExcel_Calculation_Functions::VALUE();} // function NEGBINOMDIST()/*** NORMDIST** Returns the normal distribution for the specified mean and standard deviation. This* function has a very wide range of applications in statistics, including hypothesis* testing.** @param float $value* @param float $mean Mean Value* @param float $stdDev Standard Deviation* @param boolean $cumulative* @return float**/public static function NORMDIST($value, $mean, $stdDev, $cumulative) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {if ($stdDev < 0) {return PHPExcel_Calculation_Functions::NaN();}if ((is_numeric($cumulative)) || (is_bool($cumulative))) {if ($cumulative) {return 0.5 * (1 + PHPExcel_Calculation_Engineering::_erfVal(($value - $mean) / ($stdDev * sqrt(2))));} else {return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean,2) / (2 * ($stdDev * $stdDev))));}}}return PHPExcel_Calculation_Functions::VALUE();} // function NORMDIST()/*** NORMINV** Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.** @param float $value* @param float $mean Mean Value* @param float $stdDev Standard Deviation* @return float**/public static function NORMINV($probability,$mean,$stdDev) {$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {if (($probability < 0) || ($probability > 1)) {return PHPExcel_Calculation_Functions::NaN();}if ($stdDev < 0) {return PHPExcel_Calculation_Functions::NaN();}return (self::_inverse_ncdf($probability) * $stdDev) + $mean;}return PHPExcel_Calculation_Functions::VALUE();} // function NORMINV()/*** NORMSDIST** Returns the standard normal cumulative distribution function. The distribution has* a mean of 0 (zero) and a standard deviation of one. Use this function in place of a* table of standard normal curve areas.** @param float $value* @return float*/public static function NORMSDIST($value) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);return self::NORMDIST($value, 0, 1, True);} // function NORMSDIST()/*** NORMSINV** Returns the inverse of the standard normal cumulative distribution** @param float $value* @return float*/public static function NORMSINV($value) {return self::NORMINV($value, 0, 1);} // function NORMSINV()/*** PERCENTILE** Returns the nth percentile of values in a range..** Excel Function:* PERCENTILE(value1[,value2[, ...]],entry)** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @param float $entry Percentile value in the range 0..1, inclusive.* @return float*/public static function PERCENTILE() {$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());// Calculate$entry = array_pop($aArgs);if ((is_numeric($entry)) && (!is_string($entry))) {if (($entry < 0) || ($entry > 1)) {return PHPExcel_Calculation_Functions::NaN();}$mArgs = array();foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$mArgs[] = $arg;}}$mValueCount = count($mArgs);if ($mValueCount > 0) {sort($mArgs);$count = self::COUNT($mArgs);$index = $entry * ($count-1);$iBase = floor($index);if ($index == $iBase) {return $mArgs[$index];} else {$iNext = $iBase + 1;$iProportion = $index - $iBase;return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ;}}}return PHPExcel_Calculation_Functions::VALUE();} // function PERCENTILE()/*** PERCENTRANK** Returns the rank of a value in a data set as a percentage of the data set.** @param array of number An array of, or a reference to, a list of numbers.* @param number The number whose rank you want to find.* @param number The number of significant digits for the returned percentage value.* @return float*/public static function PERCENTRANK($valueSet,$value,$significance=3) {$valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance);foreach($valueSet as $key => $valueEntry) {if (!is_numeric($valueEntry)) {unset($valueSet[$key]);}}sort($valueSet,SORT_NUMERIC);$valueCount = count($valueSet);if ($valueCount == 0) {return PHPExcel_Calculation_Functions::NaN();}$valueAdjustor = $valueCount - 1;if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {return PHPExcel_Calculation_Functions::NA();}$pos = array_search($value,$valueSet);if ($pos === False) {$pos = 0;$testValue = $valueSet[0];while ($testValue < $value) {$testValue = $valueSet[++$pos];}--$pos;$pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));}return round($pos / $valueAdjustor,$significance);} // function PERCENTRANK()/*** PERMUT** Returns the number of permutations for a given number of objects that can be* selected from number objects. A permutation is any set or subset of objects or* events where internal order is significant. Permutations are different from* combinations, for which the internal order is not significant. Use this function* for lottery-style probability calculations.** @param int $numObjs Number of different objects* @param int $numInSet Number of objects in each permutation* @return int Number of permutations*/public static function PERMUT($numObjs,$numInSet) {$numObjs = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs);$numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet);if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {$numInSet = floor($numInSet);if ($numObjs < $numInSet) {return PHPExcel_Calculation_Functions::NaN();}return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet));}return PHPExcel_Calculation_Functions::VALUE();} // function PERMUT()/*** POISSON** Returns the Poisson distribution. A common application of the Poisson distribution* is predicting the number of events over a specific time, such as the number of* cars arriving at a toll plaza in 1 minute.** @param float $value* @param float $mean Mean Value* @param boolean $cumulative* @return float**/public static function POISSON($value, $mean, $cumulative) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);if ((is_numeric($value)) && (is_numeric($mean))) {if (($value <= 0) || ($mean <= 0)) {return PHPExcel_Calculation_Functions::NaN();}if ((is_numeric($cumulative)) || (is_bool($cumulative))) {if ($cumulative) {$summer = 0;for ($i = 0; $i <= floor($value); ++$i) {$summer += pow($mean,$i) / PHPExcel_Calculation_MathTrig::FACT($i);}return exp(0-$mean) * $summer;} else {return (exp(0-$mean) * pow($mean,$value)) / PHPExcel_Calculation_MathTrig::FACT($value);}}}return PHPExcel_Calculation_Functions::VALUE();} // function POISSON()/*** QUARTILE** Returns the quartile of a data set.** Excel Function:* QUARTILE(value1[,value2[, ...]],entry)** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @param int $entry Quartile value in the range 1..3, inclusive.* @return float*/public static function QUARTILE() {$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());// Calculate$entry = floor(array_pop($aArgs));if ((is_numeric($entry)) && (!is_string($entry))) {$entry /= 4;if (($entry < 0) || ($entry > 1)) {return PHPExcel_Calculation_Functions::NaN();}return self::PERCENTILE($aArgs,$entry);}return PHPExcel_Calculation_Functions::VALUE();} // function QUARTILE()/*** RANK** Returns the rank of a number in a list of numbers.** @param number The number whose rank you want to find.* @param array of number An array of, or a reference to, a list of numbers.* @param mixed Order to sort the values in the value set* @return float*/public static function RANK($value,$valueSet,$order=0) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);$order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order);foreach($valueSet as $key => $valueEntry) {if (!is_numeric($valueEntry)) {unset($valueSet[$key]);}}if ($order == 0) {rsort($valueSet,SORT_NUMERIC);} else {sort($valueSet,SORT_NUMERIC);}$pos = array_search($value,$valueSet);if ($pos === False) {return PHPExcel_Calculation_Functions::NA();}return ++$pos;} // function RANK()/*** RSQ** Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @return float*/public static function RSQ($yValues,$xValues) {if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return PHPExcel_Calculation_Functions::DIV0();}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);return $bestFitLinear->getGoodnessOfFit();} // function RSQ()/*** SKEW** Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry* of a distribution around its mean. Positive skewness indicates a distribution with an* asymmetric tail extending toward more positive values. Negative skewness indicates a* distribution with an asymmetric tail extending toward more negative values.** @param array Data Series* @return float*/public static function SKEW() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());$mean = self::AVERAGE($aArgs);$stdDev = self::STDEV($aArgs);$count = $summer = 0;// Loop through argumentsforeach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {} else {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$summer += pow((($arg - $mean) / $stdDev),3) ;++$count;}}}// Returnif ($count > 2) {return $summer * ($count / (($count-1) * ($count-2)));}return PHPExcel_Calculation_Functions::DIV0();} // function SKEW()/*** SLOPE** Returns the slope of the linear regression line through data points in known_y's and known_x's.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @return float*/public static function SLOPE($yValues,$xValues) {if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return PHPExcel_Calculation_Functions::DIV0();}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);return $bestFitLinear->getSlope();} // function SLOPE()/*** SMALL** Returns the nth smallest value in a data set. You can use this function to* select a value based on its relative standing.** Excel Function:* SMALL(value1[,value2[, ...]],entry)** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @param int $entry Position (ordered from the smallest) in the array or range of data to return* @return float*/public static function SMALL() {$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());// Calculate$entry = array_pop($aArgs);if ((is_numeric($entry)) && (!is_string($entry))) {$mArgs = array();foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$mArgs[] = $arg;}}$count = self::COUNT($mArgs);$entry = floor(--$entry);if (($entry < 0) || ($entry >= $count) || ($count == 0)) {return PHPExcel_Calculation_Functions::NaN();}sort($mArgs);return $mArgs[$entry];}return PHPExcel_Calculation_Functions::VALUE();} // function SMALL()/*** STANDARDIZE** Returns a normalized value from a distribution characterized by mean and standard_dev.** @param float $value Value to normalize* @param float $mean Mean Value* @param float $stdDev Standard Deviation* @return float Standardized value*/public static function STANDARDIZE($value,$mean,$stdDev) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {if ($stdDev <= 0) {return PHPExcel_Calculation_Functions::NaN();}return ($value - $mean) / $stdDev ;}return PHPExcel_Calculation_Functions::VALUE();} // function STANDARDIZE()/*** STDEV** Estimates standard deviation based on a sample. The standard deviation is a measure of how* widely values are dispersed from the average value (the mean).** Excel Function:* STDEV(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function STDEV() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());// Return value$returnValue = null;$aMean = self::AVERAGE($aArgs);if (!is_null($aMean)) {$aCount = -1;foreach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {$arg = (integer) $arg;}// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {if (is_null($returnValue)) {$returnValue = pow(($arg - $aMean),2);} else {$returnValue += pow(($arg - $aMean),2);}++$aCount;}}// Returnif (($aCount > 0) && ($returnValue >= 0)) {return sqrt($returnValue / $aCount);}}return PHPExcel_Calculation_Functions::DIV0();} // function STDEV()/*** STDEVA** Estimates standard deviation based on a sample, including numbers, text, and logical values** Excel Function:* STDEVA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function STDEVA() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());// Return value$returnValue = null;$aMean = self::AVERAGEA($aArgs);if (!is_null($aMean)) {$aCount = -1;foreach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {} else {// Is it a numeric value?if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {if (is_bool($arg)) {$arg = (integer) $arg;} elseif (is_string($arg)) {$arg = 0;}if (is_null($returnValue)) {$returnValue = pow(($arg - $aMean),2);} else {$returnValue += pow(($arg - $aMean),2);}++$aCount;}}}// Returnif (($aCount > 0) && ($returnValue >= 0)) {return sqrt($returnValue / $aCount);}}return PHPExcel_Calculation_Functions::DIV0();} // function STDEVA()/*** STDEVP** Calculates standard deviation based on the entire population** Excel Function:* STDEVP(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function STDEVP() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());// Return value$returnValue = null;$aMean = self::AVERAGE($aArgs);if (!is_null($aMean)) {$aCount = 0;foreach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {$arg = (integer) $arg;}// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {if (is_null($returnValue)) {$returnValue = pow(($arg - $aMean),2);} else {$returnValue += pow(($arg - $aMean),2);}++$aCount;}}// Returnif (($aCount > 0) && ($returnValue >= 0)) {return sqrt($returnValue / $aCount);}}return PHPExcel_Calculation_Functions::DIV0();} // function STDEVP()/*** STDEVPA** Calculates standard deviation based on the entire population, including numbers, text, and logical values** Excel Function:* STDEVPA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function STDEVPA() {$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());// Return value$returnValue = null;$aMean = self::AVERAGEA($aArgs);if (!is_null($aMean)) {$aCount = 0;foreach ($aArgs as $k => $arg) {if ((is_bool($arg)) &&(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {} else {// Is it a numeric value?if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {if (is_bool($arg)) {$arg = (integer) $arg;} elseif (is_string($arg)) {$arg = 0;}if (is_null($returnValue)) {$returnValue = pow(($arg - $aMean),2);} else {$returnValue += pow(($arg - $aMean),2);}++$aCount;}}}// Returnif (($aCount > 0) && ($returnValue >= 0)) {return sqrt($returnValue / $aCount);}}return PHPExcel_Calculation_Functions::DIV0();} // function STDEVPA()/*** STEYX** Returns the standard error of the predicted y-value for each x in the regression.** @param array of mixed Data Series Y* @param array of mixed Data Series X* @return float*/public static function STEYX($yValues,$xValues) {if (!self::_checkTrendArrays($yValues,$xValues)) {return PHPExcel_Calculation_Functions::VALUE();}$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {return PHPExcel_Calculation_Functions::NA();} elseif ($yValueCount == 1) {return PHPExcel_Calculation_Functions::DIV0();}$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);return $bestFitLinear->getStdevOfResiduals();} // function STEYX()/*** TDIST** Returns the probability of Student's T distribution.** @param float $value Value for the function* @param float $degrees degrees of freedom* @param float $tails number of tails (1 or 2)* @return float*/public static function TDIST($value, $degrees, $tails) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));$tails = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails));if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {return PHPExcel_Calculation_Functions::NaN();}// tdist, which finds the probability that corresponds to a given value// of t with k degrees of freedom. This algorithm is translated from a// pascal function on p81 of "Statistical Computing in Pascal" by D// Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:// London). The above Pascal algorithm is itself a translation of the// fortran algoritm "AS 3" by B E Cooper of the Atlas Computer// Laboratory as reported in (among other places) "Applied Statistics// Algorithms", editied by P Griffiths and I D Hill (1985; Ellis// Horwood Ltd.; W. Sussex, England).$tterm = $degrees;$ttheta = atan2($value,sqrt($tterm));$tc = cos($ttheta);$ts = sin($ttheta);$tsum = 0;if (($degrees % 2) == 1) {$ti = 3;$tterm = $tc;} else {$ti = 2;$tterm = 1;}$tsum = $tterm;while ($ti < $degrees) {$tterm *= $tc * $tc * ($ti - 1) / $ti;$tsum += $tterm;$ti += 2;}$tsum *= $ts;if (($degrees % 2) == 1) { $tsum = M_2DIVPI * ($tsum + $ttheta); }$tValue = 0.5 * (1 + $tsum);if ($tails == 1) {return 1 - abs($tValue);} else {return 1 - abs((1 - $tValue) - $tValue);}}return PHPExcel_Calculation_Functions::VALUE();} // function TDIST()/*** TINV** Returns the one-tailed probability of the chi-squared distribution.** @param float $probability Probability for the function* @param float $degrees degrees of freedom* @return float*/public static function TINV($probability, $degrees) {$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));if ((is_numeric($probability)) && (is_numeric($degrees))) {$xLo = 100;$xHi = 0;$x = $xNew = 1;$dx = 1;$i = 0;while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {// Apply Newton-Raphson step$result = self::TDIST($x, $degrees, 2);$error = $result - $probability;if ($error == 0.0) {$dx = 0;} elseif ($error < 0.0) {$xLo = $x;} else {$xHi = $x;}// Avoid division by zeroif ($result != 0.0) {$dx = $error / $result;$xNew = $x - $dx;}// If the NR fails to converge (which for example may be the// case if the initial guess is too rough) we apply a bisection// step to determine a more narrow interval around the root.if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {$xNew = ($xLo + $xHi) / 2;$dx = $xNew - $x;}$x = $xNew;}if ($i == MAX_ITERATIONS) {return PHPExcel_Calculation_Functions::NA();}return round($x,12);}return PHPExcel_Calculation_Functions::VALUE();} // function TINV()/*** TREND** Returns values along a linear trend** @param array of mixed Data Series Y* @param array of mixed Data Series X* @param array of mixed Values of X for which we want to find Y* @param boolean A logical value specifying whether to force the intersect to equal 0.* @return array of float*/public static function TREND($yValues,$xValues=array(),$newValues=array(),$const=True) {$yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);$xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);$newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);$const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const);if (empty($newValues)) {$newValues = $bestFitLinear->getXValues();}$returnArray = array();foreach($newValues as $xValue) {$returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);}return $returnArray;} // function TREND()/*** TRIMMEAN** Returns the mean of the interior of a data set. TRIMMEAN calculates the mean* taken by excluding a percentage of data points from the top and bottom tails* of a data set.** Excel Function:* TRIMEAN(value1[,value2[, ...]],$discard)** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @param float $discard Percentage to discard* @return float*/public static function TRIMMEAN() {$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());// Calculate$percent = array_pop($aArgs);if ((is_numeric($percent)) && (!is_string($percent))) {if (($percent < 0) || ($percent > 1)) {return PHPExcel_Calculation_Functions::NaN();}$mArgs = array();foreach ($aArgs as $arg) {// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$mArgs[] = $arg;}}$discard = floor(self::COUNT($mArgs) * $percent / 2);sort($mArgs);for ($i=0; $i < $discard; ++$i) {array_pop($mArgs);array_shift($mArgs);}return self::AVERAGE($mArgs);}return PHPExcel_Calculation_Functions::VALUE();} // function TRIMMEAN()/*** VARFunc** Estimates variance based on a sample.** Excel Function:* VAR(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function VARFunc() {// Return value$returnValue = PHPExcel_Calculation_Functions::DIV0();$summerA = $summerB = 0;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());$aCount = 0;foreach ($aArgs as $arg) {if (is_bool($arg)) { $arg = (integer) $arg; }// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$summerA += ($arg * $arg);$summerB += $arg;++$aCount;}}// Returnif ($aCount > 1) {$summerA *= $aCount;$summerB *= $summerB;$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));}return $returnValue;} // function VARFunc()/*** VARA** Estimates variance based on a sample, including numbers, text, and logical values** Excel Function:* VARA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function VARA() {// Return value$returnValue = PHPExcel_Calculation_Functions::DIV0();$summerA = $summerB = 0;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());$aCount = 0;foreach ($aArgs as $k => $arg) {if ((is_string($arg)) &&(PHPExcel_Calculation_Functions::isValue($k))) {return PHPExcel_Calculation_Functions::VALUE();} elseif ((is_string($arg)) &&(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {} else {// Is it a numeric value?if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {if (is_bool($arg)) {$arg = (integer) $arg;} elseif (is_string($arg)) {$arg = 0;}$summerA += ($arg * $arg);$summerB += $arg;++$aCount;}}}// Returnif ($aCount > 1) {$summerA *= $aCount;$summerB *= $summerB;$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));}return $returnValue;} // function VARA()/*** VARP** Calculates variance based on the entire population** Excel Function:* VARP(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function VARP() {// Return value$returnValue = PHPExcel_Calculation_Functions::DIV0();$summerA = $summerB = 0;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());$aCount = 0;foreach ($aArgs as $arg) {if (is_bool($arg)) { $arg = (integer) $arg; }// Is it a numeric value?if ((is_numeric($arg)) && (!is_string($arg))) {$summerA += ($arg * $arg);$summerB += $arg;++$aCount;}}// Returnif ($aCount > 0) {$summerA *= $aCount;$summerB *= $summerB;$returnValue = ($summerA - $summerB) / ($aCount * $aCount);}return $returnValue;} // function VARP()/*** VARPA** Calculates variance based on the entire population, including numbers, text, and logical values** Excel Function:* VARPA(value1[,value2[, ...]])** @access public* @category Statistical Functions* @param mixed $arg,... Data values* @return float*/public static function VARPA() {// Return value$returnValue = PHPExcel_Calculation_Functions::DIV0();$summerA = $summerB = 0;// Loop through arguments$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());$aCount = 0;foreach ($aArgs as $k => $arg) {if ((is_string($arg)) &&(PHPExcel_Calculation_Functions::isValue($k))) {return PHPExcel_Calculation_Functions::VALUE();} elseif ((is_string($arg)) &&(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {} else {// Is it a numeric value?if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {if (is_bool($arg)) {$arg = (integer) $arg;} elseif (is_string($arg)) {$arg = 0;}$summerA += ($arg * $arg);$summerB += $arg;++$aCount;}}}// Returnif ($aCount > 0) {$summerA *= $aCount;$summerB *= $summerB;$returnValue = ($summerA - $summerB) / ($aCount * $aCount);}return $returnValue;} // function VARPA()/*** WEIBULL** Returns the Weibull distribution. Use this distribution in reliability* analysis, such as calculating a device's mean time to failure.** @param float $value* @param float $alpha Alpha Parameter* @param float $beta Beta Parameter* @param boolean $cumulative* @return float**/public static function WEIBULL($value, $alpha, $beta, $cumulative) {$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {return PHPExcel_Calculation_Functions::NaN();}if ((is_numeric($cumulative)) || (is_bool($cumulative))) {if ($cumulative) {return 1 - exp(0 - pow($value / $beta,$alpha));} else {return ($alpha / pow($beta,$alpha)) * pow($value,$alpha - 1) * exp(0 - pow($value / $beta,$alpha));}}}return PHPExcel_Calculation_Functions::VALUE();} // function WEIBULL()/*** ZTEST** Returns the Weibull distribution. Use this distribution in reliability* analysis, such as calculating a device's mean time to failure.** @param float $dataSet* @param float $m0 Alpha Parameter* @param float $sigma Beta Parameter* @param boolean $cumulative* @return float**/public static function ZTEST($dataSet, $m0, $sigma = NULL) {$dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet);$m0 = PHPExcel_Calculation_Functions::flattenSingleValue($m0);$sigma = PHPExcel_Calculation_Functions::flattenSingleValue($sigma);if (is_null($sigma)) {$sigma = self::STDEV($dataSet);}$n = count($dataSet);return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0)/($sigma/SQRT($n)));} // function ZTEST()} // class PHPExcel_Calculation_Statistical