Subversion Repositories Applications.papyrus

Rev

Blame | Last modification | View Log | RSS feed

if(!dojo._hasResource["dojox.gfx.arc"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.
dojo._hasResource["dojox.gfx.arc"] = true;
dojo.provide("dojox.gfx.arc");

dojo.require("dojox.gfx.matrix");

(function(){
        var m = dojox.gfx.matrix,
                unitArcAsBezier = function(alpha){
                        // summary: return a start point, 1st and 2nd control points, and an end point of
                        //              a an arc, which is reflected on the x axis
                        // alpha: Number: angle in radians, the arc will be 2 * angle size
                        var cosa  = Math.cos(alpha), sina  = Math.sin(alpha),
                                p2 = {x: cosa + (4 / 3) * (1 - cosa), y: sina - (4 / 3) * cosa * (1 - cosa) / sina};
                        return {        // Object
                                s:  {x: cosa, y: -sina},
                                c1: {x: p2.x, y: -p2.y},
                                c2: p2,
                                e:  {x: cosa, y: sina}
                        };
                },
                twoPI = 2 * Math.PI, pi4 = Math.PI / 4, pi8 = Math.PI / 8, 
                pi48 = pi4 + pi8, curvePI4 = unitArcAsBezier(pi8);

        dojo.mixin(dojox.gfx.arc, {
                unitArcAsBezier: unitArcAsBezier,
                curvePI4: curvePI4,
                arcAsBezier: function(last, rx, ry, xRotg, large, sweep, x, y){
                        // summary: calculates an arc as a series of Bezier curves
                        //      given the last point and a standard set of SVG arc parameters,
                        //      it returns an array of arrays of parameters to form a series of
                        //      absolute Bezier curves.
                        // last: Object: a point-like object as a start of the arc
                        // rx: Number: a horizontal radius for the virtual ellipse
                        // ry: Number: a vertical radius for the virtual ellipse
                        // xRotg: Number: a rotation of an x axis of the virtual ellipse in degrees
                        // large: Boolean: which part of the ellipse will be used (the larger arc if true)
                        // sweep: Boolean: direction of the arc (CW if true)
                        // x: Number: the x coordinate of the end point of the arc
                        // y: Number: the y coordinate of the end point of the arc
                        
                        // calculate parameters
                        large = Boolean(large);
                        sweep = Boolean(sweep);
                        var xRot = m._degToRad(xRotg),
                                rx2 = rx * rx, ry2 = ry * ry,
                                pa = m.multiplyPoint(
                                        m.rotate(-xRot), 
                                        {x: (last.x - x) / 2, y: (last.y - y) / 2}
                                ),
                                pax2 = pa.x * pa.x, pay2 = pa.y * pa.y,
                                c1 = Math.sqrt((rx2 * ry2 - rx2 * pay2 - ry2 * pax2) / (rx2 * pay2 + ry2 * pax2));
                        if(isNaN(c1)){ c1 = 0; }
                        var     ca = {
                                        x:  c1 * rx * pa.y / ry,
                                        y: -c1 * ry * pa.x / rx
                                };
                        if(large == sweep){
                                ca = {x: -ca.x, y: -ca.y};
                        }
                        // the center
                        var c = m.multiplyPoint(
                                [
                                        m.translate(
                                                (last.x + x) / 2,
                                                (last.y + y) / 2
                                        ),
                                        m.rotate(xRot)
                                ], 
                                ca
                        );
                        // calculate the elliptic transformation
                        var elliptic_transform = m.normalize([
                                m.translate(c.x, c.y),
                                m.rotate(xRot),
                                m.scale(rx, ry)
                        ]);
                        // start, end, and size of our arc
                        var inversed = m.invert(elliptic_transform),
                                sp = m.multiplyPoint(inversed, last),
                                ep = m.multiplyPoint(inversed, x, y),
                                startAngle = Math.atan2(sp.y, sp.x),
                                endAngle   = Math.atan2(ep.y, ep.x),
                                theta = startAngle - endAngle;  // size of our arc in radians
                        if(sweep){ theta = -theta; }
                        if(theta < 0){
                                theta += twoPI;
                        }else if(theta > twoPI){
                                theta -= twoPI;
                        }
                                                        
                        // draw curve chunks
                        var alpha = pi8, curve = curvePI4, step  = sweep ? alpha : -alpha,
                                result = [];
                        for(var angle = theta; angle > 0; angle -= pi4){
                                if(angle < pi48){
                                        alpha = angle / 2;
                                        curve = unitArcAsBezier(alpha);
                                        step  = sweep ? alpha : -alpha;
                                        angle = 0;      // stop the loop
                                }
                                var c1, c2, e,
                                        M = m.normalize([elliptic_transform, m.rotate(startAngle + step)]);
                                if(sweep){
                                        c1 = m.multiplyPoint(M, curve.c1);
                                        c2 = m.multiplyPoint(M, curve.c2);
                                        e  = m.multiplyPoint(M, curve.e );
                                }else{
                                        c1 = m.multiplyPoint(M, curve.c2);
                                        c2 = m.multiplyPoint(M, curve.c1);
                                        e  = m.multiplyPoint(M, curve.s );
                                }
                                // draw the curve
                                result.push([c1.x, c1.y, c2.x, c2.y, e.x, e.y]);
                                startAngle += 2 * step;
                        }
                        return result;  // Object
                }
        });
})();

}