Blame | Last modification | View Log | RSS feed
if(!dojo._hasResource["dojox.gfx.arc"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.dojo._hasResource["dojox.gfx.arc"] = true;dojo.provide("dojox.gfx.arc");dojo.require("dojox.gfx.matrix");(function(){var m = dojox.gfx.matrix,unitArcAsBezier = function(alpha){// summary: return a start point, 1st and 2nd control points, and an end point of// a an arc, which is reflected on the x axis// alpha: Number: angle in radians, the arc will be 2 * angle sizevar cosa = Math.cos(alpha), sina = Math.sin(alpha),p2 = {x: cosa + (4 / 3) * (1 - cosa), y: sina - (4 / 3) * cosa * (1 - cosa) / sina};return { // Objects: {x: cosa, y: -sina},c1: {x: p2.x, y: -p2.y},c2: p2,e: {x: cosa, y: sina}};},twoPI = 2 * Math.PI, pi4 = Math.PI / 4, pi8 = Math.PI / 8,pi48 = pi4 + pi8, curvePI4 = unitArcAsBezier(pi8);dojo.mixin(dojox.gfx.arc, {unitArcAsBezier: unitArcAsBezier,curvePI4: curvePI4,arcAsBezier: function(last, rx, ry, xRotg, large, sweep, x, y){// summary: calculates an arc as a series of Bezier curves// given the last point and a standard set of SVG arc parameters,// it returns an array of arrays of parameters to form a series of// absolute Bezier curves.// last: Object: a point-like object as a start of the arc// rx: Number: a horizontal radius for the virtual ellipse// ry: Number: a vertical radius for the virtual ellipse// xRotg: Number: a rotation of an x axis of the virtual ellipse in degrees// large: Boolean: which part of the ellipse will be used (the larger arc if true)// sweep: Boolean: direction of the arc (CW if true)// x: Number: the x coordinate of the end point of the arc// y: Number: the y coordinate of the end point of the arc// calculate parameterslarge = Boolean(large);sweep = Boolean(sweep);var xRot = m._degToRad(xRotg),rx2 = rx * rx, ry2 = ry * ry,pa = m.multiplyPoint(m.rotate(-xRot),{x: (last.x - x) / 2, y: (last.y - y) / 2}),pax2 = pa.x * pa.x, pay2 = pa.y * pa.y,c1 = Math.sqrt((rx2 * ry2 - rx2 * pay2 - ry2 * pax2) / (rx2 * pay2 + ry2 * pax2));if(isNaN(c1)){ c1 = 0; }var ca = {x: c1 * rx * pa.y / ry,y: -c1 * ry * pa.x / rx};if(large == sweep){ca = {x: -ca.x, y: -ca.y};}// the centervar c = m.multiplyPoint([m.translate((last.x + x) / 2,(last.y + y) / 2),m.rotate(xRot)],ca);// calculate the elliptic transformationvar elliptic_transform = m.normalize([m.translate(c.x, c.y),m.rotate(xRot),m.scale(rx, ry)]);// start, end, and size of our arcvar inversed = m.invert(elliptic_transform),sp = m.multiplyPoint(inversed, last),ep = m.multiplyPoint(inversed, x, y),startAngle = Math.atan2(sp.y, sp.x),endAngle = Math.atan2(ep.y, ep.x),theta = startAngle - endAngle; // size of our arc in radiansif(sweep){ theta = -theta; }if(theta < 0){theta += twoPI;}else if(theta > twoPI){theta -= twoPI;}// draw curve chunksvar alpha = pi8, curve = curvePI4, step = sweep ? alpha : -alpha,result = [];for(var angle = theta; angle > 0; angle -= pi4){if(angle < pi48){alpha = angle / 2;curve = unitArcAsBezier(alpha);step = sweep ? alpha : -alpha;angle = 0; // stop the loop}var c1, c2, e,M = m.normalize([elliptic_transform, m.rotate(startAngle + step)]);if(sweep){c1 = m.multiplyPoint(M, curve.c1);c2 = m.multiplyPoint(M, curve.c2);e = m.multiplyPoint(M, curve.e );}else{c1 = m.multiplyPoint(M, curve.c2);c2 = m.multiplyPoint(M, curve.c1);e = m.multiplyPoint(M, curve.s );}// draw the curveresult.push([c1.x, c1.y, c2.x, c2.y, e.x, e.y]);startAngle += 2 * step;}return result; // Object}});})();}