Blame | Last modification | View Log | RSS feed
if(!dojo._hasResource["dojox.gfx.decompose"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.dojo._hasResource["dojox.gfx.decompose"] = true;dojo.provide("dojox.gfx.decompose");dojo.require("dojox.gfx.matrix");(function(){var m = dojox.gfx.matrix;var eq = function(/* Number */ a, /* Number */ b){// summary: compare two FP numbers for equalityreturn Math.abs(a - b) <= 1e-6 * (Math.abs(a) + Math.abs(b)); // Boolean};var calcFromValues = function(/* Number */ r1, /* Number */ m1, /* Number */ r2, /* Number */ m2){// summary: uses two close FP ration and their original magnitudes to approximate the resultif(!isFinite(r1)){return r2; // Number}else if(!isFinite(r2)){return r1; // Number}m1 = Math.abs(m1), m2 = Math.abs(m2);return (m1 * r1 + m2 * r2) / (m1 + m2); // Number};var transpose = function(/* dojox.gfx.matrix.Matrix2D */ matrix){// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like objectvar M = new m.Matrix2D(matrix);return dojo.mixin(M, {dx: 0, dy: 0, xy: M.yx, yx: M.xy}); // dojox.gfx.matrix.Matrix2D};var scaleSign = function(/* dojox.gfx.matrix.Matrix2D */ matrix){return (matrix.xx * matrix.yy < 0 || matrix.xy * matrix.yx > 0) ? -1 : 1; // Number};var eigenvalueDecomposition = function(/* dojox.gfx.matrix.Matrix2D */ matrix){// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like objectvar M = m.normalize(matrix),b = -M.xx - M.yy,c = M.xx * M.yy - M.xy * M.yx,d = Math.sqrt(b * b - 4 * c),l1 = -(b + (b < 0 ? -d : d)) / 2,l2 = c / l1,vx1 = M.xy / (l1 - M.xx), vy1 = 1,vx2 = M.xy / (l2 - M.xx), vy2 = 1;if(eq(l1, l2)){vx1 = 1, vy1 = 0, vx2 = 0, vy2 = 1;}if(!isFinite(vx1)){vx1 = 1, vy1 = (l1 - M.xx) / M.xy;if(!isFinite(vy1)){vx1 = (l1 - M.yy) / M.yx, vy1 = 1;if(!isFinite(vx1)){vx1 = 1, vy1 = M.yx / (l1 - M.yy);}}}if(!isFinite(vx2)){vx2 = 1, vy2 = (l2 - M.xx) / M.xy;if(!isFinite(vy2)){vx2 = (l2 - M.yy) / M.yx, vy2 = 1;if(!isFinite(vx2)){vx2 = 1, vy2 = M.yx / (l2 - M.yy);}}}var d1 = Math.sqrt(vx1 * vx1 + vy1 * vy1),d2 = Math.sqrt(vx2 * vx2 + vy2 * vy2);if(!isFinite(vx1 /= d1)){ vx1 = 0; }if(!isFinite(vy1 /= d1)){ vy1 = 0; }if(!isFinite(vx2 /= d2)){ vx2 = 0; }if(!isFinite(vy2 /= d2)){ vy2 = 0; }return { // Objectvalue1: l1,value2: l2,vector1: {x: vx1, y: vy1},vector2: {x: vx2, y: vy2}};};var decomposeSR = function(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){// summary: decomposes a matrix into [scale, rotate]; no checks are done.var sign = scaleSign(M),a = result.angle1 = (Math.atan2(M.yx, M.yy) + Math.atan2(-sign * M.xy, sign * M.xx)) / 2,cos = Math.cos(a), sin = Math.sin(a);result.sx = calcFromValues(M.xx / cos, cos, -M.xy / sin, sin);result.sy = calcFromValues(M.yy / cos, cos, M.yx / sin, sin);return result; // Object};var decomposeRS = function(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){// summary: decomposes a matrix into [rotate, scale]; no checks are donevar sign = scaleSign(M),a = result.angle2 = (Math.atan2(sign * M.yx, sign * M.xx) + Math.atan2(-M.xy, M.yy)) / 2,cos = Math.cos(a), sin = Math.sin(a);result.sx = calcFromValues(M.xx / cos, cos, M.yx / sin, sin);result.sy = calcFromValues(M.yy / cos, cos, -M.xy / sin, sin);return result; // Object};dojox.gfx.decompose = function(matrix){// summary: decompose a 2D matrix into translation, scaling, and rotation components// description: this function decompose a matrix into four logical components:// translation, rotation, scaling, and one more rotation using SVD.// The components should be applied in following order:// | [translate, rotate(angle2), scale, rotate(angle1)]// matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like objectvar M = m.normalize(matrix),result = {dx: M.dx, dy: M.dy, sx: 1, sy: 1, angle1: 0, angle2: 0};// detect case: [scale]if(eq(M.xy, 0) && eq(M.yx, 0)){return dojo.mixin(result, {sx: M.xx, sy: M.yy}); // Object}// detect case: [scale, rotate]if(eq(M.xx * M.yx, -M.xy * M.yy)){return decomposeSR(M, result); // Object}// detect case: [rotate, scale]if(eq(M.xx * M.xy, -M.yx * M.yy)){return decomposeRS(M, result); // Object}// do SVDvar MT = transpose(M),u = eigenvalueDecomposition([M, MT]),v = eigenvalueDecomposition([MT, M]),U = new m.Matrix2D({xx: u.vector1.x, xy: u.vector2.x, yx: u.vector1.y, yy: u.vector2.y}),VT = new m.Matrix2D({xx: v.vector1.x, xy: v.vector1.y, yx: v.vector2.x, yy: v.vector2.y}),S = new m.Matrix2D([m.invert(U), M, m.invert(VT)]);decomposeSR(VT, result);S.xx *= result.sx;S.yy *= result.sy;decomposeRS(U, result);S.xx *= result.sx;S.yy *= result.sy;return dojo.mixin(result, {sx: S.xx, sy: S.yy}); // Object};})();}