Subversion Repositories eFlore/Applications.cel

Rev

Blame | Last modification | View Log | RSS feed

<?php
/**
 *      @package JAMA
 *
 *      For an m-by-n matrix A with m >= n, the singular value decomposition is
 *      an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
 *      an n-by-n orthogonal matrix V so that A = U*S*V'.
 *
 *      The singular values, sigma[$k] = S[$k][$k], are ordered so that
 *      sigma[0] >= sigma[1] >= ... >= sigma[n-1].
 *
 *      The singular value decompostion always exists, so the constructor will
 *      never fail.  The matrix condition number and the effective numerical
 *      rank can be computed from this decomposition.
 *
 *      @author  Paul Meagher
 *      @license PHP v3.0
 *      @version 1.1
 */
class SingularValueDecomposition  {

        /**
         *      Internal storage of U.
         *      @var array
         */
        private $U = array();

        /**
         *      Internal storage of V.
         *      @var array
         */
        private $V = array();

        /**
         *      Internal storage of singular values.
         *      @var array
         */
        private $s = array();

        /**
         *      Row dimension.
         *      @var int
         */
        private $m;

        /**
         *      Column dimension.
         *      @var int
         */
        private $n;


        /**
         *      Construct the singular value decomposition
         *
         *      Derived from LINPACK code.
         *
         *      @param $A Rectangular matrix
         *      @return Structure to access U, S and V.
         */
        public function __construct($Arg) {

                // Initialize.
                $A = $Arg->getArrayCopy();
                $this->m = $Arg->getRowDimension();
                $this->n = $Arg->getColumnDimension();
                $nu      = min($this->m, $this->n);
                $e       = array();
                $work    = array();
                $wantu   = true;
                $wantv   = true;
                $nct = min($this->m - 1, $this->n);
                $nrt = max(0, min($this->n - 2, $this->m));

                // Reduce A to bidiagonal form, storing the diagonal elements
                // in s and the super-diagonal elements in e.
                for ($k = 0; $k < max($nct,$nrt); ++$k) {

                        if ($k < $nct) {
                                // Compute the transformation for the k-th column and
                                // place the k-th diagonal in s[$k].
                                // Compute 2-norm of k-th column without under/overflow.
                                $this->s[$k] = 0;
                                for ($i = $k; $i < $this->m; ++$i) {
                                        $this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
                                }
                                if ($this->s[$k] != 0.0) {
                                        if ($A[$k][$k] < 0.0) {
                                                $this->s[$k] = -$this->s[$k];
                                        }
                                        for ($i = $k; $i < $this->m; ++$i) {
                                                $A[$i][$k] /= $this->s[$k];
                                        }
                                        $A[$k][$k] += 1.0;
                                }
                                $this->s[$k] = -$this->s[$k];
                        }

                        for ($j = $k + 1; $j < $this->n; ++$j) {
                                if (($k < $nct) & ($this->s[$k] != 0.0)) {
                                        // Apply the transformation.
                                        $t = 0;
                                        for ($i = $k; $i < $this->m; ++$i) {
                                                $t += $A[$i][$k] * $A[$i][$j];
                                        }
                                        $t = -$t / $A[$k][$k];
                                        for ($i = $k; $i < $this->m; ++$i) {
                                                $A[$i][$j] += $t * $A[$i][$k];
                                        }
                                        // Place the k-th row of A into e for the
                                        // subsequent calculation of the row transformation.
                                        $e[$j] = $A[$k][$j];
                                }
                        }

                        if ($wantu AND ($k < $nct)) {
                                // Place the transformation in U for subsequent back
                                // multiplication.
                                for ($i = $k; $i < $this->m; ++$i) {
                                        $this->U[$i][$k] = $A[$i][$k];
                                }
                        }

                        if ($k < $nrt) {
                                // Compute the k-th row transformation and place the
                                // k-th super-diagonal in e[$k].
                                // Compute 2-norm without under/overflow.
                                $e[$k] = 0;
                                for ($i = $k + 1; $i < $this->n; ++$i) {
                                        $e[$k] = hypo($e[$k], $e[$i]);
                                }
                                if ($e[$k] != 0.0) {
                                        if ($e[$k+1] < 0.0) {
                                                $e[$k] = -$e[$k];
                                        }
                                        for ($i = $k + 1; $i < $this->n; ++$i) {
                                                $e[$i] /= $e[$k];
                                        }
                                        $e[$k+1] += 1.0;
                                }
                                $e[$k] = -$e[$k];
                                if (($k+1 < $this->m) AND ($e[$k] != 0.0)) {
                                        // Apply the transformation.
                                        for ($i = $k+1; $i < $this->m; ++$i) {
                                                $work[$i] = 0.0;
                                        }
                                        for ($j = $k+1; $j < $this->n; ++$j) {
                                                for ($i = $k+1; $i < $this->m; ++$i) {
                                                        $work[$i] += $e[$j] * $A[$i][$j];
                                                }
                                        }
                                        for ($j = $k + 1; $j < $this->n; ++$j) {
                                                $t = -$e[$j] / $e[$k+1];
                                                for ($i = $k + 1; $i < $this->m; ++$i) {
                                                        $A[$i][$j] += $t * $work[$i];
                                                }
                                        }
                                }
                                if ($wantv) {
                                        // Place the transformation in V for subsequent
                                        // back multiplication.
                                        for ($i = $k + 1; $i < $this->n; ++$i) {
                                                $this->V[$i][$k] = $e[$i];
                                        }
                                }
                        }
                }

                // Set up the final bidiagonal matrix or order p.
                $p = min($this->n, $this->m + 1);
                if ($nct < $this->n) {
                        $this->s[$nct] = $A[$nct][$nct];
                }
                if ($this->m < $p) {
                        $this->s[$p-1] = 0.0;
                }
                if ($nrt + 1 < $p) {
                        $e[$nrt] = $A[$nrt][$p-1];
                }
                $e[$p-1] = 0.0;
                // If required, generate U.
                if ($wantu) {
                        for ($j = $nct; $j < $nu; ++$j) {
                                for ($i = 0; $i < $this->m; ++$i) {
                                        $this->U[$i][$j] = 0.0;
                                }
                                $this->U[$j][$j] = 1.0;
                        }
                        for ($k = $nct - 1; $k >= 0; --$k) {
                                if ($this->s[$k] != 0.0) {
                                        for ($j = $k + 1; $j < $nu; ++$j) {
                                                $t = 0;
                                                for ($i = $k; $i < $this->m; ++$i) {
                                                        $t += $this->U[$i][$k] * $this->U[$i][$j];
                                                }
                                                $t = -$t / $this->U[$k][$k];
                                                for ($i = $k; $i < $this->m; ++$i) {
                                                        $this->U[$i][$j] += $t * $this->U[$i][$k];
                                                }
                                        }
                                        for ($i = $k; $i < $this->m; ++$i ) {
                                                $this->U[$i][$k] = -$this->U[$i][$k];
                                        }
                                        $this->U[$k][$k] = 1.0 + $this->U[$k][$k];
                                        for ($i = 0; $i < $k - 1; ++$i) {
                                                $this->U[$i][$k] = 0.0;
                                        }
                                } else {
                                        for ($i = 0; $i < $this->m; ++$i) {
                                                $this->U[$i][$k] = 0.0;
                                        }
                                        $this->U[$k][$k] = 1.0;
                                }
                        }
                }

                // If required, generate V.
                if ($wantv) {
                        for ($k = $this->n - 1; $k >= 0; --$k) {
                                if (($k < $nrt) AND ($e[$k] != 0.0)) {
                                        for ($j = $k + 1; $j < $nu; ++$j) {
                                                $t = 0;
                                                for ($i = $k + 1; $i < $this->n; ++$i) {
                                                        $t += $this->V[$i][$k]* $this->V[$i][$j];
                                                }
                                                $t = -$t / $this->V[$k+1][$k];
                                                for ($i = $k + 1; $i < $this->n; ++$i) {
                                                        $this->V[$i][$j] += $t * $this->V[$i][$k];
                                                }
                                        }
                                }
                                for ($i = 0; $i < $this->n; ++$i) {
                                        $this->V[$i][$k] = 0.0;
                                }
                                $this->V[$k][$k] = 1.0;
                        }
                }

                // Main iteration loop for the singular values.
                $pp   = $p - 1;
                $iter = 0;
                $eps  = pow(2.0, -52.0);

                while ($p > 0) {
                        // Here is where a test for too many iterations would go.
                        // This section of the program inspects for negligible
                        // elements in the s and e arrays.  On completion the
                        // variables kase and k are set as follows:
                        // kase = 1  if s(p) and e[k-1] are negligible and k<p
                        // kase = 2  if s(k) is negligible and k<p
                        // kase = 3  if e[k-1] is negligible, k<p, and
                        //           s(k), ..., s(p) are not negligible (qr step).
                        // kase = 4  if e(p-1) is negligible (convergence).
                        for ($k = $p - 2; $k >= -1; --$k) {
                                if ($k == -1) {
                                        break;
                                }
                                if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k+1]))) {
                                        $e[$k] = 0.0;
                                        break;
                                }
                        }
                        if ($k == $p - 2) {
                                $kase = 4;
                        } else {
                                for ($ks = $p - 1; $ks >= $k; --$ks) {
                                        if ($ks == $k) {
                                                break;
                                        }
                                        $t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks-1]) : 0.);
                                        if (abs($this->s[$ks]) <= $eps * $t)  {
                                                $this->s[$ks] = 0.0;
                                                break;
                                        }
                                }
                                if ($ks == $k) {
                                        $kase = 3;
                                } else if ($ks == $p-1) {
                                        $kase = 1;
                                } else {
                                        $kase = 2;
                                        $k = $ks;
                                }
                        }
                        ++$k;

                        // Perform the task indicated by kase.
                        switch ($kase) {
                                // Deflate negligible s(p).
                                case 1:
                                                $f = $e[$p-2];
                                                $e[$p-2] = 0.0;
                                                for ($j = $p - 2; $j >= $k; --$j) {
                                                        $t  = hypo($this->s[$j],$f);
                                                        $cs = $this->s[$j] / $t;
                                                        $sn = $f / $t;
                                                        $this->s[$j] = $t;
                                                        if ($j != $k) {
                                                                $f = -$sn * $e[$j-1];
                                                                $e[$j-1] = $cs * $e[$j-1];
                                                        }
                                                        if ($wantv) {
                                                                for ($i = 0; $i < $this->n; ++$i) {
                                                                        $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p-1];
                                                                        $this->V[$i][$p-1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p-1];
                                                                        $this->V[$i][$j] = $t;
                                                                }
                                                        }
                                                }
                                                break;
                                // Split at negligible s(k).
                                case 2:
                                                $f = $e[$k-1];
                                                $e[$k-1] = 0.0;
                                                for ($j = $k; $j < $p; ++$j) {
                                                        $t = hypo($this->s[$j], $f);
                                                        $cs = $this->s[$j] / $t;
                                                        $sn = $f / $t;
                                                        $this->s[$j] = $t;
                                                        $f = -$sn * $e[$j];
                                                        $e[$j] = $cs * $e[$j];
                                                        if ($wantu) {
                                                                for ($i = 0; $i < $this->m; ++$i) {
                                                                        $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k-1];
                                                                        $this->U[$i][$k-1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k-1];
                                                                        $this->U[$i][$j] = $t;
                                                                }
                                                        }
                                                }
                                                break;
                                // Perform one qr step.
                                case 3:
                                                // Calculate the shift.
                                                $scale = max(max(max(max(
                                                                        abs($this->s[$p-1]),abs($this->s[$p-2])),abs($e[$p-2])),
                                                                        abs($this->s[$k])), abs($e[$k]));
                                                $sp   = $this->s[$p-1] / $scale;
                                                $spm1 = $this->s[$p-2] / $scale;
                                                $epm1 = $e[$p-2] / $scale;
                                                $sk   = $this->s[$k] / $scale;
                                                $ek   = $e[$k] / $scale;
                                                $b    = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
                                                $c    = ($sp * $epm1) * ($sp * $epm1);
                                                $shift = 0.0;
                                                if (($b != 0.0) || ($c != 0.0)) {
                                                        $shift = sqrt($b * $b + $c);
                                                        if ($b < 0.0) {
                                                                $shift = -$shift;
                                                        }
                                                        $shift = $c / ($b + $shift);
                                                }
                                                $f = ($sk + $sp) * ($sk - $sp) + $shift;
                                                $g = $sk * $ek;
                                                // Chase zeros.
                                                for ($j = $k; $j < $p-1; ++$j) {
                                                        $t  = hypo($f,$g);
                                                        $cs = $f/$t;
                                                        $sn = $g/$t;
                                                        if ($j != $k) {
                                                                $e[$j-1] = $t;
                                                        }
                                                        $f = $cs * $this->s[$j] + $sn * $e[$j];
                                                        $e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
                                                        $g = $sn * $this->s[$j+1];
                                                        $this->s[$j+1] = $cs * $this->s[$j+1];
                                                        if ($wantv) {
                                                                for ($i = 0; $i < $this->n; ++$i) {
                                                                        $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j+1];
                                                                        $this->V[$i][$j+1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j+1];
                                                                        $this->V[$i][$j] = $t;
                                                                }
                                                        }
                                                        $t = hypo($f,$g);
                                                        $cs = $f/$t;
                                                        $sn = $g/$t;
                                                        $this->s[$j] = $t;
                                                        $f = $cs * $e[$j] + $sn * $this->s[$j+1];
                                                        $this->s[$j+1] = -$sn * $e[$j] + $cs * $this->s[$j+1];
                                                        $g = $sn * $e[$j+1];
                                                        $e[$j+1] = $cs * $e[$j+1];
                                                        if ($wantu && ($j < $this->m - 1)) {
                                                                for ($i = 0; $i < $this->m; ++$i) {
                                                                        $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j+1];
                                                                        $this->U[$i][$j+1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j+1];
                                                                        $this->U[$i][$j] = $t;
                                                                }
                                                        }
                                                }
                                                $e[$p-2] = $f;
                                                $iter = $iter + 1;
                                                break;
                                // Convergence.
                                case 4:
                                                // Make the singular values positive.
                                                if ($this->s[$k] <= 0.0) {
                                                        $this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
                                                        if ($wantv) {
                                                                for ($i = 0; $i <= $pp; ++$i) {
                                                                        $this->V[$i][$k] = -$this->V[$i][$k];
                                                                }
                                                        }
                                                }
                                                // Order the singular values.
                                                while ($k < $pp) {
                                                        if ($this->s[$k] >= $this->s[$k+1]) {
                                                                break;
                                                        }
                                                        $t = $this->s[$k];
                                                        $this->s[$k] = $this->s[$k+1];
                                                        $this->s[$k+1] = $t;
                                                        if ($wantv AND ($k < $this->n - 1)) {
                                                                for ($i = 0; $i < $this->n; ++$i) {
                                                                        $t = $this->V[$i][$k+1];
                                                                        $this->V[$i][$k+1] = $this->V[$i][$k];
                                                                        $this->V[$i][$k] = $t;
                                                                }
                                                        }
                                                        if ($wantu AND ($k < $this->m-1)) {
                                                                for ($i = 0; $i < $this->m; ++$i) {
                                                                        $t = $this->U[$i][$k+1];
                                                                        $this->U[$i][$k+1] = $this->U[$i][$k];
                                                                        $this->U[$i][$k] = $t;
                                                                }
                                                        }
                                                        ++$k;
                                                }
                                                $iter = 0;
                                                --$p;
                                                break;
                        } // end switch
                } // end while

        } // end constructor


        /**
         *      Return the left singular vectors
         *
         *      @access public
         *      @return U
         */
        public function getU() {
                return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
        }


        /**
         *      Return the right singular vectors
         *
         *      @access public
         *      @return V
         */
        public function getV() {
                return new Matrix($this->V);
        }


        /**
         *      Return the one-dimensional array of singular values
         *
         *      @access public
         *      @return diagonal of S.
         */
        public function getSingularValues() {
                return $this->s;
        }


        /**
         *      Return the diagonal matrix of singular values
         *
         *      @access public
         *      @return S
         */
        public function getS() {
                for ($i = 0; $i < $this->n; ++$i) {
                        for ($j = 0; $j < $this->n; ++$j) {
                                $S[$i][$j] = 0.0;
                        }
                        $S[$i][$i] = $this->s[$i];
                }
                return new Matrix($S);
        }


        /**
         *      Two norm
         *
         *      @access public
         *      @return max(S)
         */
        public function norm2() {
                return $this->s[0];
        }


        /**
         *      Two norm condition number
         *
         *      @access public
         *      @return max(S)/min(S)
         */
        public function cond() {
                return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
        }


        /**
         *      Effective numerical matrix rank
         *
         *      @access public
         *      @return Number of nonnegligible singular values.
         */
        public function rank() {
                $eps = pow(2.0, -52.0);
                $tol = max($this->m, $this->n) * $this->s[0] * $eps;
                $r = 0;
                for ($i = 0; $i < count($this->s); ++$i) {
                        if ($this->s[$i] > $tol) {
                                ++$r;
                        }
                }
                return $r;
        }

}       //      class SingularValueDecomposition