Blame | Last modification | View Log | RSS feed
<?php
/**
* Author : Julien Moquet
*
* Inspired by Proj4js from Mike Adair madairATdmsolutions.ca
* and Richard Greenwood rich@greenwoodmap.com
* License: LGPL as per: http://www.gnu.org/copyleft/lesser.html
*/
class Proj4phpCommon {
public $PI = M_PI; #3.141592653589793238; //Math.PI,
public $HALF_PI = M_PI_2; #1.570796326794896619; //Math.PI*0.5,
public $TWO_PI = 6.283185307179586477; //Math.PI*2,
public $FORTPI = 0.78539816339744833;
public $R2D = 57.29577951308232088;
public $D2R = 0.01745329251994329577;
public $SEC_TO_RAD = 4.84813681109535993589914102357e-6; /* SEC_TO_RAD = Pi/180/3600 */
public $EPSLN = 1.0e-10;
public $MAX_ITER = 20;
// following constants from geocent.c
public $COS_67P5 = 0.38268343236508977; /* cosine of 67.5 degrees */
public $AD_C = 1.0026000; /* Toms region 1 constant */
/* datum_type values */
public $PJD_UNKNOWN = 0;
public $PJD_3PARAM = 1;
public $PJD_7PARAM = 2;
public $PJD_GRIDSHIFT = 3;
public $PJD_WGS84 = 4; // WGS84 or equivalent
public $PJD_NODATUM = 5; // WGS84 or equivalent
const SRS_WGS84_SEMIMAJOR = 6378137.0; // only used in grid shift transforms
// ellipoid pj_set_ell.c
public $SIXTH = .1666666666666666667; /* 1/6 */
public $RA4 = .04722222222222222222; /* 17/360 */
public $RA6 = .02215608465608465608; /* 67/3024 */
public $RV4 = .06944444444444444444; /* 5/72 */
public $RV6 = .04243827160493827160; /* 55/1296 */
/* meridinal distance for ellipsoid and inverse
* * 8th degree - accurate to < 1e-5 meters when used in conjuction
* * with typical major axis values.
* * Inverse determines phi to EPS (1e-11) radians, about 1e-6 seconds.
*/
protected $C00 = 1.0;
protected $C02 = .25;
protected $C04 = .046875;
protected $C06 = .01953125;
protected $C08 = .01068115234375;
protected $C22 = .75;
protected $C44 = .46875;
protected $C46 = .01302083333333333333;
protected $C48 = .00712076822916666666;
protected $C66 = .36458333333333333333;
protected $C68 = .00569661458333333333;
protected $C88 = .3076171875;
/**
* Function to compute the constant small m which is the radius of
* a parallel of latitude, phi, divided by the semimajor axis.
*
* @param type $eccent
* @param type $sinphi
* @param type $cosphi
* @return type
*/
public function msfnz( $eccent, $sinphi, $cosphi ) {
$con = $eccent * $sinphi;
return $cosphi / (sqrt( 1.0 - $con * $con ));
}
/**
* Function to compute the constant small t for use in the forward
* computations in the Lambert Conformal Conic and the Polar
* Stereographic projections.
*
* @param type $eccent
* @param type $phi
* @param type $sinphi
* @return type
*/
public function tsfnz( $eccent, $phi, $sinphi ) {
$con = $eccent * $sinphi;
$com = 0.5 * $eccent;
$con = pow( ((1.0 - $con) / (1.0 + $con) ), $com );
return (tan( .5 * (M_PI_2 - $phi) ) / $con);
}
/**
* Function to compute the latitude angle, phi2, for the inverse of the
* Lambert Conformal Conic and Polar Stereographic projections.
*
* rise up an assertion if there is no convergence.
*
* @param type $eccent
* @param type $ts
* @return type
*/
public function phi2z( $eccent, $ts ) {
$eccnth = .5 * $eccent;
$phi = M_PI_2 - 2 * atan( $ts );
for( $i = 0; $i <= 15; $i++ ) {
$con = $eccent * sin( $phi );
$dphi = M_PI_2 - 2 * atan( $ts * (pow( ((1.0 - $con) / (1.0 + $con) ), $eccnth )) ) - $phi;
$phi += $dphi;
if( abs( $dphi ) <= .0000000001 )
return $phi;
}
assert( "false; /* phi2z has NoConvergence */" );
return (-9999);
}
/**
* Function to compute constant small q which is the radius of a
* parallel of latitude, phi, divided by the semimajor axis.
*
* @param type $eccent
* @param type $sinphi
* @return type
*/
public function qsfnz( $eccent, $sinphi ) {
if( $eccent > 1.0e-7 ) {
$con = $eccent * $sinphi;
return (( 1.0 - $eccent * $eccent) * ($sinphi / (1.0 - $con * $con) - (.5 / $eccent) * log( (1.0 - $con) / (1.0 + $con) )));
}
return (2.0 * $sinphi);
}
/**
* Function to eliminate roundoff errors in asin
*
* @param type $x
* @return type
*/
public function asinz( $x ) {
return asin(
abs( $x ) > 1.0 ? ($x > 1.0 ? 1.0 : -1.0) : $x
);
#if( abs( $x ) > 1.0 ) {
# $x = ($x > 1.0) ? 1.0 : -1.0;
#}
#return asin( $x );
}
/**
* following functions from gctpc cproj.c for transverse mercator projections
*
* @param type $x
* @return type
*/
public function e0fn( $x ) {
return (1.0 - 0.25 * $x * (1.0 + $x / 16.0 * (3.0 + 1.25 * $x)));
}
/**
*
* @param type $x
* @return type
*/
public function e1fn( $x ) {
return (0.375 * $x * (1.0 + 0.25 * $x * (1.0 + 0.46875 * $x)));
}
/**
*
* @param type $x
* @return type
*/
public function e2fn( $x ) {
return (0.05859375 * $x * $x * (1.0 + 0.75 * $x));
}
/**
*
* @param type $x
* @return type
*/
public function e3fn( $x ) {
return ($x * $x * $x * (35.0 / 3072.0));
}
/**
*
* @param type $e0
* @param type $e1
* @param type $e2
* @param type $e3
* @param type $phi
* @return type
*/
public function mlfn( $e0, $e1, $e2, $e3, $phi ) {
return ($e0 * $phi - $e1 * sin( 2.0 * $phi ) + $e2 * sin( 4.0 * $phi ) - $e3 * sin( 6.0 * $phi ));
}
/**
*
* @param type $esinp
* @param type $exp
* @return type
*/
public function srat( $esinp, $exp ) {
return (pow( (1.0 - $esinp) / (1.0 + $esinp), $exp ));
}
/**
* Function to return the sign of an argument
*
* @param type $x
* @return type
*/
public function sign( $x ) {
return $x < 0.0 ? -1 : 1;
}
/**
* Function to adjust longitude to -180 to 180; input in radians
*
* @param type $x
* @return type
*/
public function adjust_lon( $x ) {
return (abs( $x ) < M_PI) ? $x : ($x - ($this->sign( $x ) * $this->TWO_PI) );
}
/**
* IGNF - DGR : algorithms used by IGN France
* Function to adjust latitude to -90 to 90; input in radians
*
* @param type $x
* @return type
*/
public function adjust_lat( $x ) {
$x = (abs( $x ) < M_PI_2) ? $x : ($x - ($this->sign( $x ) * M_PI) );
return $x;
}
/**
* Latitude Isometrique - close to tsfnz ...
*
* @param type $eccent
* @param float $phi
* @param type $sinphi
* @return string
*/
public function latiso( $eccent, $phi, $sinphi ) {
if( abs( $phi ) > M_PI_2 )
return +NaN;
if( $phi == M_PI_2 )
return INF;
if( $phi == -1.0 * M_PI_2 )
return -1.0 * INF;
$con = $eccent * $sinphi;
return log( tan( (M_PI_2 + $phi) / 2.0 ) ) + $eccent * log( (1.0 - $con) / (1.0 + $con) ) / 2.0;
}
/**
*
* @param type $x
* @param type $L
* @return type
*/
public function fL( $x, $L ) {
return 2.0 * atan( $x * exp( $L ) ) - M_PI_2;
}
/**
* Inverse Latitude Isometrique - close to ph2z
*
* @param type $eccent
* @param type $ts
* @return type
*/
public function invlatiso( $eccent, $ts ) {
$phi = $this->fL( 1.0, $ts );
$Iphi = 0.0;
$con = 0.0;
do {
$Iphi = $phi;
$con = $eccent * sin( $Iphi );
$phi = $this->fL( exp( $eccent * log( (1.0 + $con) / (1.0 - $con) ) / 2.0 ), $ts );
} while( abs( $phi - $Iphi ) > 1.0e-12 );
return $phi;
}
/**
* Grande Normale
*
* @param type $a
* @param type $e
* @param type $sinphi
* @return type
*/
public function gN( $a, $e, $sinphi ) {
$temp = $e * $sinphi;
return $a / sqrt( 1.0 - $temp * $temp );
}
/**
* code from the PROJ.4 pj_mlfn.c file; this may be useful for other projections
*
* @param type $es
* @return type
*/
public function pj_enfn( $es ) {
$en = array( );
$en[0] = $this->C00 - $es * ($this->C02 + $es * ($this->C04 + $es * ($this->C06 + $es * $this->C08)));
$en[1] = es * ($this->C22 - $es * ($this->C04 + $es * ($this->C06 + $es * $this->C08)));
$t = $es * $es;
$en[2] = $t * ($this->C44 - $es * ($this->C46 + $es * $this->C48));
$t *= $es;
$en[3] = $t * ($this->C66 - $es * $this->C68);
$en[4] = $t * $es * $this->C88;
return $en;
}
/**
*
* @param type $phi
* @param type $sphi
* @param type $cphi
* @param type $en
* @return type
*/
public function pj_mlfn( $phi, $sphi, $cphi, $en ) {
$cphi *= $sphi;
$sphi *= $sphi;
return ($en[0] * $phi - $cphi * ($en[1] + $sphi * ($en[2] + $sphi * ($en[3] + $sphi * $en[4]))));
}
/**
*
* @param type $arg
* @param type $es
* @param type $en
* @return type
*/
public function pj_inv_mlfn( $arg, $es, $en ) {
$k = (float) 1 / (1 - $es);
$phi = $arg;
for( $i = Proj4php::$common->MAX_ITER; $i; --$i ) { /* rarely goes over 2 iterations */
$s = sin( $phi );
$t = 1. - $es * $s * $s;
//$t = $this->pj_mlfn($phi, $s, cos($phi), $en) - $arg;
//$phi -= $t * ($t * sqrt($t)) * $k;
$t = ($this->pj_mlfn( $phi, $s, cos( $phi ), $en ) - $arg) * ($t * sqrt( $t )) * $k;
$phi -= $t;
if( abs( $t ) < Proj4php::$common->EPSLN )
return $phi;
}
Proj4php::reportError( "cass:pj_inv_mlfn: Convergence error" );
return $phi;
}
}