Blame | Last modification | View Log | RSS feed
<?php
/**
* Author : Julien Moquet
*
* Inspired by Proj4php from Mike Adair madairATdmsolutions.ca
* and Richard Greenwood rich@greenwoodma$p->com
* License: LGPL as per: http://www.gnu.org/copyleft/lesser.html
*/
/*******************************************************************************
NAME SWISS OBLIQUE MERCATOR
PURPOSE: Swiss projection.
WARNING: X and Y are inverted (weird) in the swiss coordinate system. Not
here, since we want X to be horizontal and Y vertical.
ALGORITHM REFERENCES
1. "Formules et constantes pour le Calcul pour la
projection cylindrique conforme à axe oblique et pour la transformation entre
des systèmes de référence".
http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
*******************************************************************************/
class Proj4phpProjSomerc {
/**
*
*/
public function init() {
$phy0 = $this->lat0;
$this->lambda0 = $this->long0;
$sinPhy0 = sin( $phy0 );
$semiMajorAxis = $this->a;
$invF = $this->rf;
$flattening = 1 / $invF;
$e2 = 2 * $flattening - pow( $flattening, 2 );
$e = $this->e = sqrt( $e2 );
$this->R = $this->k0 * $semiMajorAxis * sqrt( 1 - $e2 ) / (1 - $e2 * pow( $sinPhy0, 2.0 ));
$this->alpha = sqrt( 1 + $e2 / (1 - $e2) * pow( cos( $phy0 ), 4.0 ) );
$this->b0 = asin( $sinPhy0 / $this->alpha );
$this->K = log( tan( $PI / 4.0 + $this->b0 / 2.0 ) )
- $this->alpha
* log( tan( $PI / 4.0 + $phy0 / 2.0 ) )
+ $this->alpha
* $e / 2
* log( (1 + $e * $sinPhy0)
/ (1 - $e * $sinPhy0) );
}
/**
*
* @param type $p
* @return type
*/
public function forward( $p ) {
$Sa1 = log( tan( $PI / 4.0 - $p->y / 2.0 ) );
$Sa2 = $this->e / 2.0
* log( (1 + $this->e * sin( $p->y ))
/ (1 - $this->e * sin( $p->y )) );
$S = -$this->alpha * ($Sa1 + $Sa2) + $this->K;
// spheric latitude
$b = 2.0 * (atan( exp( $S ) ) - proj4phpCommon::PI / 4.0);
// spheric longitude
$I = $this->alpha * ($p->x - $this->lambda0);
// psoeudo equatorial rotation
$rotI = atan( sin( $I )
/ (sin( $this->b0 ) * tan( $b ) +
cos( $this->b0 ) * cos( $I )) );
$rotB = asin( cos( $this->b0 ) * sin( $b ) -
sin( $this->b0 ) * cos( $b ) * cos( $I ) );
$p->y = $this->R / 2.0
* log( (1 + sin( $rotB )) / (1 - sin( $rotB )) )
+ $this->y0;
$p->x = $this->R * $rotI + $this->x0;
return $p;
}
/**
*
* @param type $p
* @return type
*/
public function inverse( $p ) {
$Y = $p->x - $this->x0;
$X = $p->y - $this->y0;
$rotI = $Y / $this->R;
$rotB = 2 * (atan( exp( $X / $this->R ) ) - $PI / 4.0);
$b = asin( cos( $this->b0 ) * sin( $rotB )
+ sin( $this->b0 ) * cos( $rotB ) * cos( $rotI ) );
$I = atan( sin( $rotI )
/ (cos( $this->b0 ) * cos( $rotI ) - sin( $this->b0 )
* tan( $rotB )) );
$lambda = $this->lambda0 + $I / $this->alpha;
$S = 0.0;
$phy = $b;
$prevPhy = -1000.0;
$iteration = 0;
while( abs( $phy - $prevPhy ) > 0.0000001 ) {
if( ++$iteration > 20 ) {
Proj4php::reportError( "omercFwdInfinity" );
return;
}
//S = log(tan(PI / 4.0 + phy / 2.0));
$S = 1.0
/ $this->alpha
* (log( tan( $PI / 4.0 + $b / 2.0 ) ) - $this->K)
+ $this->e
* log( tan( $PI / 4.0
+ asin( $this->e * sin( $phy ) )
/ 2.0 ) );
$prevPhy = $phy;
$phy = 2.0 * atan( exp( $S ) ) - $PI / 2.0;
}
$p->x = $lambda;
$p->y = $phy;
return $p;
}
}
Proj4php::$proj['somerc'] = new Proj4phpProjSomerc();